【DL】卷积膨胀 Dilation

本文探讨了卷积膨胀(Dilation)在深度学习中的作用,旨在克服传统卷积导致的失真问题。通过膨胀操作,使得卷积核的感受野增加,而参数数量保持不变,有效扩大了模型的视野,且详细介绍了kd=(k-1)×d+1的关系。文章引用了相关资源,深入解析了Dilation在Caffe-SSD中的Hole算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Backto DeepLearning Index

dilation

dilation 是对 kernel 进行膨胀,多出来的空隙用 0 padding。用于克服 stride 中造成的 失真问题。
在这里插入图片描述
对应关系是 k d = ( k − 1 ) × d + 1 k_{d} = (k -1)\times d + 1 kd

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值