【DL】卷积膨胀 Dilation

本文探讨了卷积膨胀(Dilation)在深度学习中的作用,旨在克服传统卷积导致的失真问题。通过膨胀操作,使得卷积核的感受野增加,而参数数量保持不变,有效扩大了模型的视野,且详细介绍了kd=(k-1)×d+1的关系。文章引用了相关资源,深入解析了Dilation在Caffe-SSD中的Hole算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Backto DeepLearning Index

dilation

dilation 是对 kernel 进行膨胀,多出来的空隙用 0 padding。用于克服 stride 中造成的 失真问题。
在这里插入图片描述
对应关系是 k d = ( k − 1 ) × d + 1 k_{d} = (k -1)\times d + 1 kd

### 利用贝叶斯优化提升TCN在故障诊断中的效果 #### 贝叶斯优化简介 贝叶斯优化是一种高效的全局优化策略,特别适用于代价高昂的目标函数。该方法通过构建目标函数的概率模型来指导搜索过程,从而有效地找到最优解[^1]。 #### TCN超参数的选择与优化 对于TCN而言,主要涉及以下几个关键超参数: - **卷积核大小**:决定了感受野范围。 - **膨胀率**:控制着不同层次的感受野扩展速度。 - **隐藏层通道数**:影响特征表示能力。 - **Dropout比例**:有助于防止过拟合现象的发生[^3]。 这些超参数对最终性能有着重要影响,在实际应用中往往需要经过仔细调试才能达到最佳配置。而采用贝叶斯优化可以显著提高这一过程效率并获得更优的结果。 #### 实现方案概述 为了将贝叶斯优化应用于TCN以改善其在故障诊断方面的能力,可按照如下方式操作: 定义待优化的超参数空间; 编写评估函数计算给定一组特定超参数下模型的表现(如准确度、F1分数等);此部分涉及到训练TCN以及测试集上的验证步骤; 利用贝叶斯优化库(例如Hyperopt、Optuna或Scikit-optimize),指定上述定义好的超参区间作为输入,并执行寻优流程直至收敛至满意水平为止。 下面给出一段Python伪代码展示如何集成这两个组件: ```python import numpy as np from sktime_dl.classification import CNNClassifier from hyperopt import fmin, tpe, hp, Trials def objective(params): """ 定义目标函数,即基于当前设置下的TCN表现 参数 params -- 当前迭代所使用的超参数组合字典形式传入 {'kernel_size': int, 'dilation_rate': list of ints, 'filters': int, 'dropout_rate': float} 返回值 loss -- 验证集上损失值或其他负向指标衡量标准 accuracy -- 测试集准确性得分 """ model = CNNClassifier( kernel_size=params['kernel_size'], dilation_rates=params['dilations'], filters=params['filters'], dropout_rate=params['dropout'] ) history = model.fit(X_train, y_train) _, test_accuracy = model.evaluate(X_test, y_test) return {'loss': -test_accuracy, 'status': STATUS_OK} space = { 'kernel_size': hp.choice('ks', range(2, 8)), 'dilations': hp.choice('dr', [[1], [1, 2], [1, 2, 4]]), 'filters': hp.quniform('f', 32, 256, q=32), 'dropout': hp.uniform('dp', 0.1, 0.7) } trials = Trials() best = fmin(fn=objective, space=space, algo=tpe.suggest, max_evals=100, trials=trials) print("Best parameters found:", best) ``` 这段代码展示了怎样使用`hyperopt`来进行贝叶斯优化的过程。其中包含了创建一个简单的TCN分类器实例化对象,并将其纳入到由贝叶斯优化驱动的目标函数之中去求取最优点的位置。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值