量子力学常用知识汇总 (部分)

follow ”Modern Quantum Mechanics“(Sakurai)

第一章 算符

  1. Hermitian Operator A = A † A = A^\dag A=A, A = ∑ a ∣ a ⟩ a ⟨ a ∣ A = \sum_a |a\rangle a\langle a| A=aaaa
  2. 2*2 hermitian matrix, X = a 0 I + σ ⃗ ⋅ a ⃗ X=a_0I+\vec{\sigma}\cdot\vec{a} X=a0I+σ a
  3. expectancy value: ⟨ A ⟩ = ⟨ ψ ∣ A ^ ∣ ψ ⟩ \langle A\rangle = \langle \psi|\hat{A}|\psi\rangle A=ψA^ψ
  4. Vector operator, ex. S ⃗ = S x x ^ + S y y ^ + S z z ^ \vec{S}=S_x\hat{x}+S_y\hat{y}+S_z\hat{z} S =Sxx^+Syy^+Szz^; Scalar operator, ex. S 2 = S x 2 + S y 2 + S z 2 S^2 = S_x^2+S_y^2+S_z^2 S2=Sx2+Sy2+Sz2
  5. if [ A , B ] = 0 [A,B]=0 [A,B]=0, ⟨ a ′ ′ ∣ B ∣ a ′ ⟩ = 0 \langle a''|B|a'\rangle=0 aBa=0
  6. Schwarz inequality: ⟨ α ∣ α ⟩ ⟨ β ∣ β ⟩ ≥ ∣ ⟨ α ∣ β ⟩ ∣ 2 \langle \alpha|\alpha\rangle\langle \beta|\beta\rangle\ge|\langle \alpha|\beta\rangle|^2 ααββαβ2
  7. the Uncertainty Relationship: ⟨ ( Δ A ) 2 ⟩ + ⟨ ( Δ B ) 2 ⟩ ≥ 1 4 ∣ ⟨ [ A , B ] ⟩ ∣ 2 \langle (\Delta A)^2\rangle+\langle (\Delta B)^2\rangle\ge \frac14 |\langle [A,B]\rangle|^2 (ΔA)2+(ΔB)241[A,B]2
  8. when Δ A ∣ ⟩ = λ Δ B ∣ ⟩ \Delta A|\rangle = \lambda\Delta B|\rangle ΔA=λΔB, λ \lambda λ is pure imaginary number, uncertainty ralationship equates.
  9. Unitary operator: U † U = U U † = 1 U^\dag U = U U^\dag = 1 UU=UU=1
  10. Uintary operator and Hermitian relationship: U ( ϵ ) = 1 + i H ϵ U(\epsilon)=1+iH\epsilon U(ϵ)=1+iHϵ wher ϵ \epsilon ϵ is infinitesmal translation
  11. important
    exp ⁡ ( i G λ ) A exp ⁡ ( − i G λ ) = A + i λ [ G , A ] + ( i λ ) 2 2 ! [ G , [ G , A ] ] + … \exp(iG\lambda)A\exp(-iG\lambda)=A + i\lambda [G,A] + \frac{(i\lambda)^2}{2!}[G,[G,A]]+\dots exp(iGλ)Aexp(iGλ)=A+iλ[G,A]+2!(iλ)2[G,[G,A]]+
  12. Translation operator and momentum operator: D ( x ′ ) = exp ⁡ ( − i p ^ x ′ / ℏ ) D(x')=\exp(-i\hat{p}x'/\hbar) D(x)=exp(ip^x/), D ( x ′ ) ∣ x ⟩ = ∣ x + x ′ ⟩ D(x')|x\rangle = |x+x'\rangle D(x)x=x+x, ⟨ x ∣ D ( x ′ ) = ⟨ x − x ′ ∣ \langle x|D(x')=\langle x-x'| xD(x)=xx, p ^ = − i ℏ ∂ x \hat{p} = -i\hbar\partial_x p^=ix
  13. relationship between x and p: ⟨ x ′ ∣ p ∣ x ′ ′ ⟩ = − i ℏ ∂ x ′ δ ( x ′ − x ′ ′ ) \langle x'|p|x''\rangle=-i\hbar \partial_{x'}\delta(x'-x'') xpx=ixδ(xx); ⟨ x ′ ∣ p ′ ⟩ = 1 2 π ℏ exp ⁡ ( i p ′ x ′ / ℏ ) \langle x'|p' \rangle=\frac{1}{\sqrt{2\pi\hbar}}\exp(ip'x'/\hbar) xp=2π 1exp(ipx/). 3-dimension, ⟨ x ⃗ ′ ∣ p ⃗ ′ ⟩ = 1 ( 2 π ℏ ) 3 / 2 exp ⁡ ( i p ⃗ ′ ⋅ x ⃗ ′ / ℏ ) \langle \vec{x}'|\vec{p}'\rangle= \frac{1}{(2\pi\hbar)^{3/2}}\exp(i \vec{p}'\cdot \vec{x}'/\hbar) x p =(2π)3/21exp(ip x /)
  14. Ehrenfest’s Theorem [ x i , G ( p ⃗ ) ] = i ℏ ∂ p i G [x_i,G(\vec{p})]=i\hbar \partial_{p_i}G [xi,G(p )]=ipiG; [ p i , F ( x ⃗ ) ] = − i ℏ ∂ x i F [p_i,F(\vec{x})]=-i\hbar\partial_{x_i}F [pi,F(x )]=ixiF
  15. Gaussian Wave Packet: ⟨ x ∣ ψ ⟩ = 1 π 1 / 4 d exp ⁡ [ i k x ′ ] exp ⁡ [ − x ′ 2 / 2 d 2 ] \langle x|\psi\rangle=\frac{1}{\pi^{1/4}\sqrt{d}}\exp[ikx']\exp[-x'^2/2d^2] xψ=π1/4d 1exp[ikx]exp[x2/2d2], ⟨ p ∣ ψ ⟩ = d ℏ π 1 / 4 exp ⁡ [ − ( p ′ − ℏ k ) 2 d 2 / 2 ℏ 2 ] \langle p|\psi\rangle = \frac{\sqrt{d}}{\sqrt{\hbar}\pi^{1/4}}\exp[-(p'-\hbar k)^2d^2/2\hbar^2] pψ= π1/4d exp[(pk)2d2/22], ⟨ x ⟩ = 0 \langle x\rangle=0 x=0, ⟨ x 2 ⟩ = d 2 / 2 \langle x^2\rangle=d^2/2 x2=d2/2, ⟨ p ⟩ = ℏ k \langle p\rangle=\hbar k p=k, ⟨ p 2 ⟩ = ℏ 2 k 2 + ℏ 2 / 2 d 2 \langle p^2\rangle = \hbar^2k^2+\hbar^2/2d^2 p2=2k2+2/2d2
  16. coherent state: H = ℏ ω ( a † a + 1 / 2 ) H=\hbar\omega(a^\dag a+1/2) H=ω(aa+1/2), D ( α ) = exp ⁡ ( α a † − α ∗ a ) = exp ⁡ ( α a † ) exp ⁡ ( − α a ) exp ⁡ ( − ∣ α ∣ 2 / 2 ) D(\alpha)=\exp(\alpha a^\dag-\alpha^* a)=\exp(\alpha a^\dag)\exp(-\alpha a)\exp(-|\alpha|^2/2) D(α)=exp(αaαa)=exp(αa)exp(αa)exp(α2/2)
    a ∣ n ⟩ = n ∣ n ⟩ a † ∣ n ⟩ = n + 1 ∣ n ⟩ a ∣ α ⟩ = α ∣ α ⟩ , ∣ α ⟩ = D ( α ) ∣ 0 ⟩ = e − ∣ α ∣ 2 / 2 ∑ n α n n ! ∣ n ⟩ ⟨ x ∣ 0 ⟩ = 1 π 1 / 4 x 0 exp ⁡ [ − 1 2 ( x ′ x 0 ) 2 ] , x 0 = ℏ / m ω \begin{aligned} a|n\rangle &= \sqrt{n}|n\rangle \\ a^\dag |n\rangle &= \sqrt{n+1}|n\rangle \\ a |\alpha\rangle &= \alpha |\alpha\rangle,\quad |\alpha\rangle = D(\alpha)|0\rangle = e^{-|\alpha|^2/2}\sum_n\frac{\alpha^n}{\sqrt{n!}}|n\rangle \\ \langle x|0\rangle &= \frac{1}{\pi^{1/4}\sqrt{x_0}}\exp [-\frac{1}{2}(\frac{x'}{x^0})^2],\quad x_0=\sqrt{\hbar/m\omega} \\ \end{aligned} ananaαx0=n n=n+1 n=αα,α=D(α)0=eα2/2nn! αnn=π1/4x0 1exp[21(x0x)2],x0=/mω

第二章 动力学

  1. U ( t , t 0 ) = exp ⁡ ( − i H ( t − t 0 ) / ℏ ) U(t,t_0)=\exp(-iH(t-t_0)/\hbar) U(t,t0)=exp(iH(tt0)/)

  2. In the interation picture, i ∂ t U ( t , t 0 ) Ψ ( t 0 ) = H ( t ) U ( t , t 0 ) Ψ ( t 0 ) i\partial_t U(t,t_0)\Psi(t_0) = H(t) U(t,t_0)\Psi(t_0) itU(t,t0)Ψ(t0)=H(t)U(t,t0)Ψ(t0)
    ,
    U ( t , t 0 ) = 1 − i ∫ t 0 t d t 1   H ( t 1 ) U ( t 1 , t 0 ) U(t,t_0)=1 - i \int_{t_0}^t{dt_1\ H(t_1)U(t_1,t_0)} U(t,t0)=1it0tdt1 H(t1)U(t1,t0)

    Iteration get Dyson Series:
    U ( t , t 0 ) = 1 + ∑ n = 1 ∞ ( − i ℏ ) n ∫ t 0 t d t 1 ∫ t 0 t 1 d t 2  ⁣ ⋯ ∫ t 0 t n − 1 d t n H ( t 1 ) H ( t 2 ) … H ( t n ) U(t,t_0) = 1+\sum_{n=1}^\infty(\frac{-i}{\hbar})^n\int_{t_0}^t dt_1\int_{t_0}^{t_1}dt2\dots \int_{t_0}^{t_{n-1}}dt_n H(t_1)H(t_2)\dots H(t_n) U(t,t0)=1+n=1(i)nt0tdt1t0t1dt2t0tn1dtnH(t1)H(t2)H(tn)

  3. p ( t ) = ∣ C ( t ) ∣ 2 p(t)= |C(t)|^2 p(t)=C(t)2, C(t) is complex amplitude. C ( t ) = ∑ a ∣ c a ∣ 2 exp ⁡ ( − i E a t / ℏ ) C(t)=\sum_a |c_a|^2\exp(-iE_at/\hbar) C(t)=a∣<

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值