2019牛客暑期多校训练营(第一场)B.Integration(留数定理)

2019牛客暑期多校训练营(第一场)B.Integration(留数定理)

题目大意

总所周知
∫ 0 ∞ 1 1 + x 2 d x = π 2 \int_0^{\infty}\frac{1}{1+x^2}dx=\frac{\pi}{2} 01+x21dx=2π
,现求
1 π ∫ 0 ∞ 1 ∏ i = 1 n ( a i 2 + x 2 ) d x \frac{1}{\pi}\int_0^\infty\frac{1}{\prod_{i=1}^n(a_i^2+x^2)}dx π10i=1n(ai2+x2)1dx

解题思路

对原式进行裂项,根据留数定理,第j项就是
1 π ∏ i = 1 n & & i ! = j ( a i 2 − a j 2 ) ∫ 0 ∞ 1 a j 2 + x 2 d x \frac{1}{\pi\prod_{i=1}^{n\&\&i!=j}(a_i^2-a_j^2)}\int_0^\infty\frac{1}{a_j^2+x^2}dx πi=1n&&i!=j(ai2aj2)10aj2+x21dx
∫ 0 ∞ 1 a j 2 + x 2 d x = π 2 a j \int_0^\infty\frac{1}{a_j^2+x^2}dx=\frac{\pi}{2a_j} 0aj2+x21dx=2ajπ

则可以得出答案

AC代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod =1e9+7;
const int size=1e3+5;
int quick_pow(int a,int b)
{
	int ans=1;
	while(b)
	{
		if(b&1) ans=1LL*ans*a%mod;
		a=1LL*a*a%mod;
		b>>=1;
	}
	return ans%mod;
}
int a[size];
int k[size];
int main()
{
 	int n;
	while(~scanf("%d",&n))
	{	
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&a[i]);
		}
		for(int i=1;i<=n;i++)
		{
			k[i]=1;
			for(int j=1;j<=n;j++)
			{
				if(j==i) continue;
				k[i]=1LL*k[i]*((1LL*a[j]*a[j]%mod-1LL*a[i]*a[i]%mod+mod)%mod)%mod;
			}
			k[i]=quick_pow(k[i],mod-2);
		}
		int ans=0;
		for(int i=1;i<=n;i++)
		{
			ans=(ans+1LL*k[i]*500000004%mod*quick_pow(a[i],mod-2)%mod)%mod;
		}
		printf("%d\n",ans);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值