文章目录
批次大小(batch size) 会影响模型的 学习效果,并且会影响 三大率(即 学习率(learning rate)、收敛速率、泛化能力)。具体影响如下:
1. 批次大小对学习率(Learning Rate, LR)的影响
-
小批次(batch size 小)
- 学习率通常需要更小,否则容易震荡甚至不收敛。
- 计算梯度的样本少,梯度更新更频繁,训练更加噪声化。
- 适合微调(fine-tuning)和小数据集,但训练时间较长。
-
大批次(batch size 大)
- 学习率可以设大一点,但不能太大,否则容易陷入局部最优解或不收敛。
- 计算梯度的样本多,梯度更加平滑,优化更稳定。
- 适合大数据集训练,收敛更快,但可能损失泛化能力。
一般来说,批次大小和学习率成正比,如果增大 batch size,通常也要增大学习率,否则训练会变慢。
2. 批次大小对收敛速率(Convergence Speed)的影响
-
小批次(batch size 小):
- 计算更频繁,但每次基于少量样本,梯度变化大,容易陷入局部最优。
- 由于梯度的随机性强,**可能需要更多轮数(epochs)**才能收敛。
-
大批次(batch size 大):
- 计算更稳定,每次基于更多样本,梯度平滑,有利于稳定优化。
- 可能收敛更快,但可能过早收敛到次优解,尤其是在非凸损失函数的情况下。
小批次可能收敛得更慢,但最终可能达到更好的效果;大批次收敛更快,但可能更容易陷入局部最优解。
3. 批次大小对泛化能力(Generalization)的影响
-
小批次(batch size 小):
- 每次训练的样本不同,更新噪声大,导致优化路径更随机,能帮助跳出局部最优解。
- 训练后的模型泛化能力通常较好,适用于测试集和真实世界数据。
-
大批次(batch size 大):
- 每次更新基于大量样本,优化过程更平滑,但可能会导致过拟合。
- 训练后的模型可能泛化能力较差,在测试集上效果不如小批次训练的模型。
一般来说,小批次训练的模型泛化能力更好,而大批次训练可能需要额外的正则化方法(如 Dropout、权重衰减等)来防止过拟合。
如何选择合适的批次大小?
- GPU 显存小(如 8GB 以下):batch size 8 ~ 32
- 普通训练(显存 16GB 以上):batch size 32 ~ 128
- 大规模数据集(显存 32GB 以上):batch size 128 ~ 512
- 微调(fine-tuning):batch size 4 ~ 16(数据少,梯度更新要更频繁)
一般经验:
- batch size 较小时,可以 降低学习率 并增加训练轮数,提高泛化能力。
- batch size 较大时,可以 增大学习率,但要 注意可能的过拟合。
- 如果 显存不足,可以用 梯度累积(gradient accumulation) 来模拟更大 batch size。
实验
5000张图片
Class | Images | Instances | Box(P | R | mAP50 | mAP50-95) |
---|---|---|---|---|---|---|
4*32=128 (100epoch) | all | 543 | 2950 | 0.596 | 0.601 | 0.647 |
4*32=128 (200epoch) | all | 543 | 2950 | 0.654 | 0.703 | 0.746 |
4*96=384 (100epoch) | all | 543 | 2950 | 0.551 | 0.58 | 0.606 |
4*96=384 (200epoch) | all | 543 | 2950 | 0.716 | 0.757 | 0.811 |
总结
批次大小 | 影响学习率 | 影响收敛速率 | 影响泛化能力 |
---|---|---|---|
小批次(batch < 32) | 学习率要小 | 训练更慢 | 泛化能力好 |
大批次(batch > 128) | 学习率可以大 | 训练更快 | 泛化能力可能下降 |
如果你不确定 batch size 选多少,可以从 32~64 开始,然后调整学习率,观察 loss 变化。