深度神经网络Tensorflow里卷积后feature map的大小
feature map的大小和输入、filter、步长都有直接的关系。网上大多是步长为1的情况,自己总结了个公式。
举个例子,输入是5x5维的tensor,卷积核filter为3x3,步长stride为1的时候
input: 5x5
filter: 3x3
stride: 1x1
最终feature map为:3x3
步长不为1的时候,输入维数又很大的时候,该怎么计算,经过自己的研究得出公式:
input_size: 输入维数大小
filter_size: 卷积核大小
stride: 步长
feature map = ⌈ (input_size - filter_size + stride) / stride ⌉ ;;上取整,边界不丢弃
以上面的例子再算一次
⌈(5-3+1) / 1 ⌉ = 3
再以AlexNet 的结构里第一层卷积验证下,如下图输入 224x224 卷积核 11x11, 步长4
feature map=⌈(224-11+4) / 4 ⌉ = 55