深度神经网络Tensorflow里卷积后feature map的大小

深度神经网络Tensorflow里卷积后feature map的大小

feature map的大小和输入、filter、步长都有直接的关系。网上大多是步长为1的情况,自己总结了个公式。


举个例子,输入是5x5维的tensor,卷积核filter为3x3,步长stride为1的时候

input: 5x5

filter:  3x3

stride: 1x1

最终feature map为:3x3


步长不为1的时候,输入维数又很大的时候,该怎么计算,经过自己的研究得出公式:

input_size: 输入维数大小

filter_size: 卷积核大小

stride: 步长

feature map = ⌈ (input_size - filter_size + stride) / stride ⌉         ;;上取整,边界不丢弃


以上面的例子再算一次

⌈(5-3+1) / 1 ⌉ = 3

再以AlexNet 的结构里第一层卷积验证下,如下图输入 224x224 卷积核 11x11, 步长4

feature map=⌈(224-11+4) / 4 ⌉ = 55



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值