MIT 18.06 linear algebra lecture 11 矩阵空间 秩一矩阵 小世界图 笔记

新向量空间

之前讨论了很多关于\(\mathbb{R}^n\)中的向量,接下来讨论任意满足向量加法和数乘的“向量”的向量空间

\(3\times 3\) 矩阵

上一节提到了所有\(3\times 3\)矩阵组成的空间\(M\)和其中一些子空间:所有\(3\times 3\)的对称矩阵\(S\);所有\(3\times 3\)的上三角矩阵\(U\);前两者的交集\(D\)——所有\(3\times 3\)对角矩阵组成的空间。

\(M\)的维数为\(9\):必须指定\(9\)个数才能确定\(M\)中的一个,\(M\)的空间类似\(\mathbb{R}^9\)。一个合适的基是:
\[ \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix},\cdots \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}. \]

对称矩阵组成的子空间维数为\(6\),分别是对角线上的三个数字和上三角的三个数字(对应下三角)\(S\)的一个基是:
\[ \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}. \]
上三角矩阵组成的向量空间\(U\)的维数也为\(6\);类似对称矩阵,选择上三角的各个位置的数字,确定一个基是:
\[ \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}. \]
这组基是之前选取的\(M\)的基的子集,但对于\(S\)选取的基则不是\(M\)的基的子集。

\(3\times 3\)的对角矩阵构成的子空间是\(D=S\cap U\),其维数是\(3\),由于\(S、U\)的基选取的比较合适,二者基的交集是\(D\)的一组基。

\(S\cup U\),一组要么是对称矩阵要么是上三角矩阵组成的\(3\times 3\)矩阵的集合是否是\(M\)的子空间?显然不是的。可以随意选一个对称矩阵与上三角矩阵相加,得到的矩阵既不是对称矩阵也不是上三角矩阵。如果将\(S\)\(U\)中所有可能的矩阵相加得到的\(\text{sum }S+U\)则是\(M\)的子空间,事实上\(S+U=M\)\(M\)中任何一个矩阵能被分解成一上三角矩阵和一对角矩阵之和),因此\(S+M\)维数为\(9\)。对于unionsum,维数遵循:
\[ \text{dim }S+\text{dim }U=\text{dim }{(S+U)}+\text{dim }{(S\cap U)} \]

微分方程

考虑\(\frac{d^2y}{dx^2}+y=0\)的解是零空间中的向量,一些特殊解有:
\[ y=\cos x, y=\sin x, y=e^{ix}. \]
完整解是:
\[ y=c_1\cos x+c_2\sin x \]
其中\(c_1\)\(c_2\)可以是任意复数。解空间是以\(\cos x\)\(\sin x\)为基向量的二维向量空间。(尽管看起来不像是向量,但是因为它们能够相加而且能够数乘,与向量性质类似)。

秩四矩阵

现在假设\(M\)\(5\times 17\)的矩阵组成的空间,其中所有秩为\(4\)的矩阵是\(M\)的子集,但不是\(M\)的子空间,即使不考虑零矩阵的情况,两个秩为\(4\)的矩阵之和的秩也并不一定为\(4\)

\(\mathbb{R}^4\),所有满足\(v_1+v_2+v_3+v_4=0\)的向量\(\begin{bmatrix}v_1\\v_2\\v_3\\v_4\end{bmatrix}\)的集合是一个子空间。其中包含零向量,而且满足加法和数乘。而且该向量空间是矩阵\(A=\begin{bmatrix}1&1&1&1\end{bmatrix}\)的零空间。因为\(A\)的秩为\(1\),零空间的维数为\(n-r=3\)。由特解得到的子空间的基是:
\[ \left[\begin{array}{r} -1 \\ 1 \\ 0 \\ 0 \end{array}\right], \left[\begin{array}{r} -1 \\ 0 \\ 1 \\ 0 \end{array}\right], \left[\begin{array}{r} -1 \\ 0 \\ 0 \\ 1 \end{array}\right] \]
\(A\)的列空间是\(R^1\)。左零空间只包括零向量,维数为\(0\),基是空集。\(A\)的行空间维度也为\(1\)

秩一矩阵

矩阵的秩等于行空间和列空间的维数,矩阵A:
\[ A= \begin{bmatrix} 1 & 4 & 5\\ 2 & 8 & 10 \end{bmatrix} \]
的秩为\(1\),因为每一列都是第一列数乘得到的:
\[ A= \begin{bmatrix} 1\\ 2 \end{bmatrix} \begin{bmatrix} 1 & 4 & 5 \end{bmatrix} \]
任意秩一矩阵\(A\)可以写成\(A=\boldsymbol{U}\boldsymbol{V}^T\),其中\(\boldsymbol{U}\)\(\boldsymbol{V}\)是列向量。后面将使用秩一矩阵构建更复杂的矩阵。

小世界图

在本课中,(graph)\(G\)是一些用边相连的节点的集合:
\[ G=\lbrace\text{nodes},\text{edges}\rbrace \]
929141-20181204160007910-1965642291.png
假设每个节点是一个人,如果两个人是朋友则两节点之间用线连接,通过图可以衍生出很多问题:两个人之间最少通过多少个朋友能够建立关系?两个人在图中的最远距离?以及相关的“六度分隔”(six degree of separation)和“世界真小”(it's a small world)。
另外一个图的例子是万维网:节点是网页,连接是网址链接。
在后续将使用矩阵来描述图,从而回答关于节点间距离的问题。


笔记来源:MIT 18.06 lecture 11

转载于:https://www.cnblogs.com/yuyin/articles/10064672.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值