MIT 18.06 linear algebra lecture 10 四个基本子空间 笔记

本节主要讨论矩阵相关的四个基本子空间和它们之间的关系。

四个子空间

任何一个\(m\times n\)的矩阵\(A\)能确定四个子空间(可能仅仅包含零向量)。

列空间 \(C(A)\)

列空间由\(A\)的列向量的所有线性组合组成,是\(\mathbb{R}^m\)中的向量空间。

零空间 \(N(A)\)

\(A\)的零空间由\(A\boldsymbol{x}=\boldsymbol{0}\)的所有解组成,是\(\mathbb{R}^n\)中的向量空间。

行空间 \(C(A^T)\)

\(A\)的行向量组成了\(\mathbb{R}^n\)中的子空间,行空间即是\(A\)转置的列空间,是\(\mathbb{R}^n\)的子空间。

左零空间 \(N(A^T)\)

\(A^T\)的零空间即是\(A\)的左零空间,是\(\mathbb{R}^m\)的子空间。

基和维数

列空间

\(r\)个主元列构成\(C(A)\)的基:
\[ \text{dim }C(A)=r \]

零空间

\(A\boldsymbol{x}=\boldsymbol{0}\)的特解对应自由变量,组成\(N(A)\)的基。\(m\times n\)的矩阵有\(n-r\)个自由变量:
\[ \text{dim }N(A)=n-r \]

行空间

利用\(A\)的行阶梯形式讨论行空间:
\[ A= \begin{bmatrix} 1 & 2 & 3 & 1\\ 1 & 1 & 2 & 1\\ 1 & 2 & 3 & 1 \end{bmatrix}\rightarrow \cdots\rightarrow \begin{bmatrix} 1 & 0 & 1 & 1\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}= \begin{bmatrix} I & F\\ 0 & 0 \end{bmatrix}=R \]
尽管\(A\)的列空间和\(R\)的列空间不同,但是\(R\)的行空间和\(A\)的行空间是一致的。\(R\)的行是\(A\)行的线性组合,通过消元的逆向行操作也能得知\(A\)\(R\)行的线性组合。

\(r\)行是矩阵\(A\)行空间的“阶梯”(echelon)基。
\[ \text{dim }C(A^T) =r \]

左零空间

矩阵\(A^T\)\(m\)列,\(A^T\)的秩是\(r\),所以\(A^T\)的自由列数量是\(m-r\)
\[ \text{dim }N(A^T)=m-r \]
\(A\)的左零空间由满足\(A^T\boldsymbol{y}=\boldsymbol{0}\)的向量\(\boldsymbol{y}\)的组成。相等的,\(\boldsymbol{y}^TA=\boldsymbol{0}\),此处\(y^T\)\(\boldsymbol{0}\)均为行向量,因为等式中\(y^T\)\(A\)的左边,所以称其组成的空间为左零空间(left nullspace)。为了找到左零向量的基,对\(A\)扩展后得到的增广矩阵进行化简:
\[ \left[\begin{array}{cc} A_{m\times n} & I_{m\times m} \end{array}\right] \rightarrow \left[\begin{array}{cc} R_{m\times n} & E_{m\times m} \end{array}\right] \]
得到\(E\)使得\(EA=R\)(如果\(A\)是方阵且可逆,\(E=A^{-1}\))。在例子中,化简后有:
\[ EA= \left[\begin{array}{rrr} -1 & 2 & 0\\ 1 & -1 & 0\\ -1 & 0 & 1 \end{array}\right] \left[\begin{array}{rrr} 1 & 2 & 3 & 1\\ 1 & 1 & 2 & 1\\ 1 & 2 & 3 & 1 \end{array}\right]= \left[\begin{array}{rrr} 1 & 0 & 1 & 1\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 \end{array}\right]=R \]
\(E\)最底下的\(m-r\)行描述\(A\)的行的线性相关,因此\(R\)底部\(m-r\)行是\(\boldsymbol{0}\)。此处\(m-r=1\)(\(R\)中有一行为零向量)。
\(E\)\(m-r\)行满足等式\(\boldsymbol{y}^TA=\boldsymbol{0}\),并且构成\(A\)的左零空间的基。

新向量空间

所有\(3\times 3\)矩阵构成一个向量空间:\(M\)。可以矩阵相加,矩阵可以乘以标量,存在所有元素为零的矩阵。在忽略矩阵能彼此相乘的情况下,矩阵的性质和向量相似。

\(M\)的子空间包括:

  • 所有上三角矩阵
  • 所有对角矩阵
  • \(D\),所有对角矩阵

\(D\)是前两个向量空间的交集。D的维度维度为3,一组基是:
\[ \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 7 \end{bmatrix}. \]


笔记来源:MIT 18.06 lecture 10

转载于:https://www.cnblogs.com/yuyin/articles/10058570.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值