题目描述
输入 m
和 n
两个数,m
和 n
表示一个 m*n
的棋盘。输入棋盘内的数据。棋盘中存在数字和"."
两种字符,如果是数字表示该位置是一匹马,如果是"."
表示该位置为空的,棋盘内的数字表示为该马能走的最大步数。
例如棋盘内某个位置一个数字为 k
,表示该马只能移动 1~k
步的距离。
棋盘内的马移动类似于中国象棋中的马移动,先在水平或者垂直方向上移动一格,然后再将其移动到对角线位置。
棋盘内的马可以移动到同一个位置,同一个位置可以有多匹马。
请问能否将棋盘上所有的马移动到同一个位置,若可以请输入移动的最小步数。若不可以输出 0
。
输入描述
输入m
和 n
两个数,m
和 n
表示一个 m*n
的棋盘。输入棋盘内的数据。
输出描述
能否将棋盘上所有的马移动到同一个位置,若可以请输入移动的最小步数。若不可以输出 0
。
用例1
输入
3 2
. .
2 .
. .
输出
0
用例二
输入
3 5
4 7 . 4 8
4 7 4 4 .
7 . . . .
输出
17
给定的用例是一个3行5列的棋盘,其中一些位置有数字,代表马的位置和它们可以走的最大步数。我们将逐步模拟广度优先搜索(BFS)的过程来找到所有马都能到达的位置,并计算出最小步数。
棋盘布局:
4 7 . 4 8
4 7 4 4 .
7 . . . .
模拟计算
步骤:
-
初始化:
- 马的位置和最大步数分别为:(0,0,4), (0,1,7), (0,3,4), (0,4,8), (1,0,4), (1,1,7), (1,2,4), (1,3,4), (2,0,7)。
-
对棋盘上的每个位置进行BFS:
- 我们需要检查棋盘上的每个位置,看看是否所有马都能到达那里。例如,我们检查位置(0,2)。
-
对每个马进行BFS:
- 从马(0,0,4)开始,它可以在4步内到达的位置有限。我们将这些位置和步数记录下来