Description
松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的。天哪,他居然真的住在“树”上。松鼠想邀请小熊维尼前来参观,并且还指定一份参观指南,他希望维尼能够按照他的指南顺序,先去a1,再去a2,……,最后到an,去参观新家。
可是这样会导致维尼重复走很多房间,懒惰的维尼不听地推辞。可是松鼠告诉他,每走到一个房间,他就可以从房间拿一块糖果吃。维尼是个馋家伙,立马就答应了。
现在松鼠希望知道为了保证维尼有糖果吃,他需要在每一个房间各放至少多少个糖果。因为松鼠参观指南上的最后一个房间an是餐厅,餐厅里他准备了丰盛的大餐,所以当维尼在参观的最后到达餐厅时就不需要再拿糖果吃了。
Input
第一行一个整数n,表示房间个数
第二行n个整数,依次描述a1-an
接下来n-1行,每行两个整数x,y,表示标号x和y的两个房间之间有树枝相连。
Output
一共n行,第i行输出标号为i的房间至少需要放多少个糖果,才能让维尼有糖果吃。
Sample Input
5
1 4 5 3 2
1 2
2 4
2 3
4 5
Sample Output
1
2
1
2
1
HINT
2<= n <=300000
解题思路:我把这道题作为树上点差分的入门题。
给你一条路,在树上多次更新一条路径上结点的答案。这需要用到LCA+树上差分
由于这题涉及到点,所以是点差分。那么我们对于每一条路径的两个端点u,v 我们先求出他们的LCA(u,v)=t;
那么我们就只需要在计数数组上进行 val[u]++;val[v]++;val[t]--;val[fa[t][0]]--;
最后跑一边DFS就够了。
对于这题 最后把每条路的终点对答案的贡献给去掉。(读题读题)
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
using namespace std;
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
const int maxn=3e5+10;
const int DEG=20;
int n,m,head[maxn],tot,dep[maxn],fa[maxn][22],a[maxn],val[maxn],bin[21];
struct Node{
int v,next;
}node[maxn*2];
void add(int u,int v){
node[tot].v=v;node[tot].next=head[u];head[u]=tot++;
}
void init(){
mem(head,-1);tot=0;mem(val,0);
}
void bfs(int u){
queue<int> qu;
while(!qu.empty()) qu.pop();
qu.push(u);dep[u]=0;
while(!qu.empty()){
u=qu.front();qu.pop();
for(int i=1;i<DEG;i++){
if(dep[u]>=bin[i]) fa[u][i]=fa[fa[u][i-1]][i-1];
else break;
}
for(int i=head[u];~i;i=node[i].next){
int v=node[i].v;
if(v!=fa[u][0]){
dep[v]=dep[u]+1;fa[v][0]=u;
qu.push(v);
}
}
}
}
void dfs(int u){
for(int i=head[u];~i;i=node[i].next){
int v=node[i].v;
if(v!=fa[u][0]){
dfs(v);
val[u]+=val[v];
}
}
}
int LCA(int u,int v){
if(dep[u]>dep[v]) swap(u,v);
int det=dep[v]-dep[u],tu=u,tv=v;
for(int i=0;det;det>>=1,i++){
if(det&1) tv=fa[tv][i];
}
if(tv==tu) return tu;
for(int i=DEG-1;i>=0;i--){
if(fa[tu][i]==fa[tv][i]) continue;
tu=fa[tu][i];tv=fa[tv][i];
}
return fa[tu][0];
}
int main(){
int i,j,u,v;
bin[0]=1;
for(i=1;i<20;i++) bin[i]=bin[i-1]<<1;
init();
scanf("%d",&n);
for(i=1;i<=n;i++) scanf("%d",&a[i]);
for(i=1;i<n;i++){
scanf("%d%d",&u,&v);
add(u,v);add(v,u);
}
bfs(a[1]);
for(i=1;i<n;i++){
int l=LCA(a[i],a[i+1]);
val[a[i]]++;val[a[i+1]]++;
val[l]--;val[fa[l][0]]--;
}
dfs(a[1]);
for(i=2;i<=n;i++) val[a[i]]--;
for(j=1;j<=n;j++) printf("%d\n",val[j]);
return 0;
}