BZOJ 1176: [Balkan2007]Mokia(cdq分治,求子矩阵的和)

题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1176

Description

维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000.

Input

第一行两个整数,S,W;其中S为矩阵初始值;W为矩阵大小

接下来每行为一下三种输入之一(不包含引号):

"1 x y a"

"2 x1 y1 x2 y2"

"3"

输入1:你需要把(x,y)(第x行第y列)的格子权值增加a

输入2:你需要求出以左下角为(x1,y1),右上角为(x2,y2)的矩阵内所有格子的权值和,并输出

输入3:表示输入结束

Output

对于每个输入2,输出一行,即输入2的答案

Sample Input

0 4
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3

Sample Output

3
5

HINT

 

保证答案不会超过int范围

 

题目思路:由于修改操作操作互不影响,且可以离线,考虑cdq分治。

AC代码:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<queue>
#include<stack>
#include<map>

using namespace std;

#define FOU(i,x,y) for(int i=x;i<=y;i++)
#define FOD(i,x,y) for(int i=x;i>=y;i--)
#define MEM(a,val) memset(a,val,sizeof(a))
#define PI acos(-1.0)

const double EXP = 1e-9;
typedef long long ll;
typedef unsigned long long ull;
const int INF = 0x3f3f3f3f;
const ll MINF = 0x3f3f3f3f3f3f3f3f;
const double DINF = 0xffffffffffff;
const int mod = 1e9+7;
const int N = 2e6+5;

struct node{
    int typ;     //类型
    int x,y;
    int id;     //记录输入相对位置
    int val;
    int pos;     //输出答案用
}a[N],tmp[N];

int n,w,tot;
int ans[10005];   //答案数组

bool cmp(node a,node b){
    if(a.x==b.x&&a.y==b.y)
        return a.id<b.id;
    if(a.x==b.x)
        return a.y<b.y;
    return a.x<b.x;
}


int tree[N]; //tree数组按二进制存,根据n的末尾0的个数存取,树状数组

int lowbit(int x)
{
    return x&(-x);
}

int Query(int x)  //返回1到x的前缀和
{
    int res=0;
    while(x)
    {
        res+=tree[x];
        x-=lowbit(x);
    }
    return res;
}

void Add(int x,int v)  //实现a[x]+v;
{
    while(x<=n)        //注意这里是小于等于k,还是n,k是数据范围
    {
        tree[x]+=v;
        x+=lowbit(x);
    }
}

void clearr(int x){
    while(x<=n){
        if(tree[x]==0)
            break;
        tree[x]=0;
        x+=lowbit(x);
    }
}

void cdq(int l,int r){
    if(l>=r)
        return ;
    int mid=l+r>>1;
    cdq(l,mid);
    cdq(mid+1,r);
    int p=l,q=mid+1,k=l;
    while(p<=mid&&q<=r){
        if(a[p].id<=a[q].id){
            if(a[p].typ==1)
                Add(a[p].y,a[p].val);
            tmp[k++] = a[p++];
        }
        else{
            if(a[q].typ==2)
                ans[a[q].pos]+=Query(a[q].y)*a[q].val;
            tmp[k++] = a[q++];
        }
    }
    while(p<=mid){
        if(a[p].typ==1)
            Add(a[p].y,a[p].val);
        tmp[k++]=a[p++];
    }
    while(q<=r){
        if(a[q].typ==2)
            ans[a[q].pos]+=Query(a[q].y)*a[q].val;
        tmp[k++]=a[q++];
    }
    for(int i=l;i<=r;i++){
        clearr(a[i].y);
        a[i]=tmp[i];
    }
}

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    std::ios::sync_with_stdio(false);
    int s;
    scanf("%d%d",&s,&n);
    int opt,x,y,val,x1,x2,y1,y2;
    tot=0;
    int m=0;
    while(~scanf("%d",&opt)){
        if(opt==3)
            break;
        if(opt==1){
            scanf("%d%d%d",&x,&y,&val);
            a[++m]=node{1,x,y,m,val,0};
        }
        else{
            scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
            ++tot;
            //比x2,y2小的都加上,val赋值1
            a[++m]=node{2,x2,y2,m,1,tot};
            //因为他是中间矩阵,而我们加是1~x,1~y的加,所以多出来的要赋值成-1,来减掉,val赋值-1
            a[++m]=node{2,x2,y1-1,m,-1,tot};
            a[++m]=node{2,x1-1,y2,m,-1,tot};
            //这里多减了一次,要加回来,val赋值1
            a[++m]=node{2,x1-1,y1-1,m,1,tot};

            ans[tot]+=(x2-x1+1)*(y2-y1+1)*s;  //答案赋初值
        }
    }
    sort(a+1,a+1+m,cmp);
    cdq(1,m);
    for(int i=1;i<=tot;i++)
        printf("%d\n",ans[i]);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值