第一类斯特林数
定理:
第一类斯特林数S1(p,k)计数的是把p个对象排成k个非空循环排列的方法数。
证明:把上述定理叙述中的循环排列叫做圆圈
递推公式:
S1(p,p)=1(p>=0),有p个人和P个圆圈,每个圆圈就只有一个人
S1(P,0)=0(P>=1)如果至少有1个人,那么任何安排都至少包含一个圆圈
S1(P,K)=(P-1)*S1(P-1,K)+S1(P-1,K-1)
//代码:
long long s1[maxn][maxn];//存放第一类Stirling数
long long mod=1e9+7;//取模
void init()
{
s1[1][1]=1;
for(int i=2;i<maxn;i++)
for(int j=1;j<maxn;j++)
s1[i][j]=(s1[i-1][j-1]+(i-1)*s1[i-1][j])%mod;
}
第二类斯特林数
定理:
第二类Stirling数S2(P,K)计数表示把P个不同元素划分到k个不可区分的盒子里且没有空盒子的划分个数
递推公式:
S2(P,P)=1(P>=0)
S2(P,0)=0 (p>=1)
S2(p,k)=k*S2(p-1,k)+S2(p-1,k-1) (1<=k<=p-1)
//代码:
long long s2[maxn][maxn];//存放第二类Stirling数
long long mod=1e9+7;//取模
void init()
{
s2[1][1]=1;
for(int i=2;i<maxn;i++)
for(int j=1;j<maxn;j++)
s2[i][j]=(s2[i-1][j-1]+j*s2[i-1][j])%mod;
}
扩展:K!* S(P,K)计数就是把P元素集合划分到K个可区分的盒子里,且没有空盒子的划分个数
Bell数
定理:B(P)是将P元素集合分到非空,且不可区分盒子的划分个数(没有要求分到几个盒子里)
B(p)=S2(P,0)+S2(P,1)+S2(P,2)+S2(P,3)+S2(P,4)+........S2(P,n);
即先求出第二类斯特林数,然后求和即可