斯特林数

第一类斯特林数
定理:
第一类斯特林数S1(p,k)计数的是把p个对象排成k个非空循环排列的方法数。

证明:把上述定理叙述中的循环排列叫做圆圈
递推公式:
S1(p,p)=1(p>=0),有p个人和P个圆圈,每个圆圈就只有一个人
S1(P,0)=0(P>=1)如果至少有1个人,那么任何安排都至少包含一个圆圈
S1(P,K)=(P-1)*S1(P-1,K)+S1(P-1,K-1)

//代码:
long long s1[maxn][maxn];//存放第一类Stirling数
long long mod=1e9+7;//取模
void init()
{
    s1[1][1]=1;
    for(int i=2;i<maxn;i++)
        for(int j=1;j<maxn;j++)
        s1[i][j]=(s1[i-1][j-1]+(i-1)*s1[i-1][j])%mod;
}

第二类斯特林数
定理:
第二类Stirling数S2(P,K)计数表示把P个不同元素划分到k个不可区分的盒子里且没有空盒子的划分个数

递推公式:
S2(P,P)=1(P>=0)   
S2(P,0)=0 (p>=1)  
S2(p,k)=k*S2(p-1,k)+S2(p-1,k-1)  (1<=k<=p-1)

//代码:
long long s2[maxn][maxn];//存放第二类Stirling数
long long mod=1e9+7;//取模
void init()
{
    s2[1][1]=1;
    for(int i=2;i<maxn;i++)
        for(int j=1;j<maxn;j++)
        s2[i][j]=(s2[i-1][j-1]+j*s2[i-1][j])%mod;
}

扩展:K!* S(P,K)计数就是把P元素集合划分到K个可区分的盒子里,且没有空盒子的划分个数

Bell数
定理:B(P)是将P元素集合分到非空,且不可区分盒子的划分个数(没有要求分到几个盒子里)
B(p)=S2(P,0)+S2(P,1)+S2(P,2)+S2(P,3)+S2(P,4)+........S2(P,n);
即先求出第二类斯特林数,然后求和即可

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值