该笔记初衷为期末复习所用,引用出处均已注明,涉及个人理解部分如果有不对之处,还请批评指正,俺会虚心接受滴!
牛顿法
1. 应用范围
关于一般函数的极小化问题。
2. 原理
因为,所以后面的项=0省略掉。
Jerry和Tom都知道: <=> 。在两种情况下,上式成立:
第一种是,这时候就是极小点。
第二情况是,有成立,这时候是极小点,是邻域内任意一点。其中,称为牛顿方向,且明显具有正定性。以第一个点为例,由此找到的就是满足df(x)/dx=0的极小点。
3. 步骤
选取一个初始点,根据迭代出下一个点。这个过程中,只要某一点满足就停止,此时极小点就是该点。
注:Jerry发现这里突然多了个步长?!这是为了使牛顿法具有整体收敛性,不因原因①初始点选取不当,以及原因②因为具有正定性,从而使???(Jerry还没有完全搞明白,回头补上)而不收敛。
拟牛顿法
1. 适用范围
关于一般函数的极小化问题。
2. 原理
拟牛顿算法是"一族"优化后的牛顿算法。
因为这项不容易算,所以大聪明们想用一个矩阵代替这项,即。显然,(校正矩阵)应当是一个迭代变化的矩阵。也就是说,找到就可以完成牛顿算法优化咯!
关于,既要确定其形式(即与和的关系),也要确定其迭代关系(即与的关系)。
Jerry认为就是f(x)的二阶导数,因此有:
令,时,可以看到的形式结构变得明晰:。
设迭代关系式普普通通平平无奇地形如。那么必须满足,即才行。显然,满足这个条件的并不唯一,可以有许多种形式。所以说拟牛顿法是一族算法,其中最常用的为DFP算法。
至此,完成了从到的大致优化。为什么说是大致优化呢?因为还没有给出具体的形式。
DFP算法
1. 原理
DFP算法构造 形式如
那么有。(注:相同颜色的项对应相等。)当
时,校正矩阵的迭代式为
2. 步骤
选取一个初始点, 。根据
其中
迭代出接下来的点。过程中,只要某一点满足就停止,此时极小点就是该点。
2021.09.26