目标检测
文章平均质量分 96
无
奔跑的chanchanchan
这个作者很懒,什么都没留下…
展开
-
YOLOv5-v6.0学习笔记
YOLOv5-6.0版本的Backbone主要分为Conv模块、CSPDarkNet53和SPPF模块。YOLOv5在Conv模块中封装了三个功能:包括卷积(Conv2d)、Batch Normalization和激活函数,同时使用autopad(k, p)实现了padding的效果。其中YOLOv5-6.0版本使用Swish(或者叫SiLU)作为激活函数,代替了旧版本中的Leaky ReLU。Focus模块是YOLOv5旧版本中的一个模块,它的结构如下图所示。其中核心部分是对图片进行切片(slice..原创 2022-06-08 12:59:55 · 18722 阅读 · 17 评论 -
Haar特征分类器和AdaBoost算法
Haar特征分类器和AdaBoost算法1. 前言2. Haar-like特征3. AdaBoost算法3.1 弱分类器3.2 弱分类器的训练3.3 强分类器3.4 强分类器的级联4. 积分图参考链接:(1) https://blog.csdn.net/JasonDing1354/article/details/37558287 (2) https://blog.csdn.net/zouxy09/article/details/7922923(3) https://blog.csdn.net/zou原创 2021-05-16 00:31:15 · 2996 阅读 · 0 评论 -
Haar特征级联分类器的训练与检测
Haar特征级联分类器的训练与检测1. 样本的创建1.1 准备正样本图片集1.2 截取目标区域1.3 创建正样本描述文件vec文件1.4 准备负样本图片集1.5 创建负样本描述文件2. 训练分类器2.1 训练器的配置2.2 运行训练器3. 目标检测4. 演示视频参考链接: https://blog.csdn.net/zhuangxiaobin/article/details/25476833Github链接:https://github.com/chanchanchan97/ROS1. 样本的创建原创 2021-05-16 12:49:50 · 4461 阅读 · 0 评论