学习笔记
文章平均质量分 95
无
奔跑的chanchanchan
这个作者很懒,什么都没留下…
展开
-
Vision Transformer学习笔记
最初提出是针对NLP领域,并且在NLP领域大获成功。这篇论文也是受到其启发,尝试将应用到CV领域。原创 2022-10-24 13:17:13 · 2688 阅读 · 0 评论 -
匈牙利算法学习笔记
二分图通常针对无向图问题。假设GVEG=(V,E)GVE是一个无向图,节点集合VVV可以分割为两个互不相交的子集,并且图中每条边依附的两个节点都分属于这两个互不相交的子集,两个子集内的节点不相邻。原创 2023-02-20 19:31:07 · 819 阅读 · 1 评论 -
李宏毅深度学习课程笔记(一)——Self-attention和Transformer
李宏毅深度学习课程笔记(一)——Self-attention和Transformer1. 前言2. Self-attention视频课程链接:https://www.bilibili.com/video/BV1Xp4y1b7ih?1. 前言在过去的使用场景中,模型的输入通常只有一个单独的向量,而模型的输出则是预测的数值或类别,如上图。但是假设输入的是一排向量(或序列),且向量的长度不是固定的,例如声音信号、语句、基因序列等,如上图。而对于模型输出而言,可以分为如下图所示的三种类型,即输入输出序列原创 2022-03-24 21:16:11 · 1704 阅读 · 0 评论 -
吴恩达卷积神经网络章节笔记(三)——目标检测
吴恩达卷积神经网络——学习笔记(三)1. 目标定位 (Object Localization)1.1 基本概念1.2 标签定义1.3 损失函数2. 目标检测 (Object Detection)视频课程链接:https://www.bilibili.com/video/BV1FT4y1E74V?笔记参考链接:https://blog.csdn.net/weixin_36815313/article/details/1057289191. 目标定位 (Object Localization)1.1原创 2021-11-19 18:09:41 · 1670 阅读 · 1 评论 -
吴恩达卷积神经网络章节笔记(二)——经典网络
ResidualBlock)来构建任意深度的神经网络,但是又能避免普通的卷积层堆积存在的信息丢失问题,保证前向信息流的顺畅,同时残差结构又能应对反向传播过程中的梯度消失问题,保证反向信息流的顺畅。对于非常深的深层神经网络来说,由于梯度消失和梯度爆炸的影响,隐藏层的权重更新缓慢甚至停滞,训练过程中网络的正、反向信息流动不顺畅,网络没有被充分训练,导致深层网络的效果还不如浅层网络。的结构并不复杂,而且网络结构很规整,同时卷积层的过滤器数量变化存在一定的规律,而它的主要缺点是需要训练的特征数量非常巨大。...原创 2021-10-24 18:30:18 · 4235 阅读 · 0 评论 -
吴恩达卷积神经网络章节笔记(一)——卷积神经网络
吴恩达卷积神经网络——学习笔记(一)1. 边缘检测示例 (Edge Detection Example)1.1 卷积运算1.2 垂直边缘检测器的应用案例2. 更多边缘检测内容 (More Edge Detection Example)3. Padding4. 卷积步长 (Strided Convolutions)5. 三维卷积 (Convolutions Over Volumes)5.1 三维卷积的计算5.2 多个过滤器的三维卷积6. 单层卷积网络 (One Layer of a Convolutional原创 2021-08-12 14:21:47 · 542 阅读 · 0 评论 -
吴恩达改善深层神经网络章节笔记(三)——参数调试和Batch Normalize
吴恩达改善深层神经网络——学习笔记(三)视频课程链接:https://www.bilibili.com/video/BV1FT4y1E74V?笔记参考链接:https://blog.csdn.net/weixin_36815313/article/details/105728919原创 2021-08-11 14:40:28 · 409 阅读 · 0 评论 -
吴恩达改善深层神经网络章节笔记(二)——优化算法
吴恩达改善深层神经网络——学习笔记(二)1. Mini-batch梯度下降 (Mini-batch Gradient Descent)视频课程链接:https://www.bilibili.com/video/BV1FT4y1E74V?笔记参考链接:https://blog.csdn.net/weixin_36815313/article/details/1057289191. Mini-batch梯度下降 (Mini-batch Gradient Descent)机器学习的应用是一个高度依赖经原创 2021-08-10 09:43:43 · 346 阅读 · 0 评论 -
吴恩达改善深层神经网络章节笔记(一)——正则化和梯度相关知识
吴恩达改善神经网络——学习笔记(一)1. 训练/开发/测试集 (Train/Dev/Test Sets)2. 偏差/方差 (Bias/Variance)3. 机器学习基础 (Basic “Recipe” for Machine Learning)视频课程链接:https://www.bilibili.com/video/BV1FT4y1E74V?笔记参考链接:https://blog.csdn.net/weixin_36815313/article/details/1057289191. 训练/开原创 2021-08-09 09:58:05 · 394 阅读 · 0 评论 -
吴恩达神经网络与深度学习章节笔记(三)——深层神经网络
吴恩达神经网络与深度学习——学习笔记(三)1. 深层神经网络 (Deep L-layer Neural Network)视频课程链接:https://www.bilibili.com/video/BV1FT4y1E74V?笔记参考链接:https://blog.csdn.net/weixin_36815313/article/details/1057289191. 深层神经网络 (Deep L-layer Neural Network)...原创 2021-06-22 15:48:44 · 259 阅读 · 0 评论 -
吴恩达神经网络与深度学习章节笔记(二)——神经网络和激活函数
吴恩达神经网络与深度学习——学习笔记(二)原创 2021-06-19 21:59:11 · 215 阅读 · 0 评论 -
吴恩达神经网络与深度学习章节笔记(一)——逻辑回归
吴恩达神经网络与深度学习——学习笔记(一)1.二元分类(Binary Classification)逻辑回归是一个用于二元分类(binary classification)的算法。以一张图片作为输入,如果识别为猫,则输出标签1为结果。如果识别到不是猫,那么输出标签0作为结果。现在我们可以用字母y来表示输出的结果。一张图片在计算机中的表示方式类似于上图。一张图片由红、绿、蓝(RGB)三种颜色通道的矩阵构成,如果你的图片大小为64x64像素,那么你就有三个规模为64x64的矩阵,分别对应图片中红、绿、原创 2021-05-19 01:05:42 · 184 阅读 · 0 评论