第五章 跌倒检测算法剖析(含跌到检测源码)

第五章  跌倒检测算法剖析

 

一、跌倒特征的研究

跌倒检测步骤一般包含为:1)人体特征检测:此阶段需要把人从背景中提取出来,并处理得到需要的人体特征,一般包括骨骼坐标点和人体姿态等;2)动作识别:对人体的特征进行分析和处理,本文是分析人体中心点的速度和高度特征,从而检测是否发生跌倒事件,排除误检和漏检,提高准确率。

跌倒是瞬间动作,人体的动作、高度和速度等会快速的改变。人体在跌倒过程中,一般是从站着到坐到地板上或者躺倒地板上,人体的中心点从较高的位置快速下降到了地面或者接近地面的高度。第一个特征可以选择从高度[10-17]入手,在[10]中作者将头部,颈部,脊椎,臀部,膝盖等骨骼点连线,检测连线与地面是否平行以及脊椎的高度是否小于给定阈值且超过10s。在[11]中作者实时检测头部的高度变化,当头部的高度小于给定阈值时,表明发生了跌倒事件。除了头部,脊椎、身体质心、两髋中心点等骨骼点也是常考虑的点。刘国帅等人[17]根据三个特征点(头部、身体质心、小腿中心)相对位置的变化和特征向量与水平地面的夹角来检测人体跌倒事件。跌倒过程人体的中心点从比较高的位置快速下降到了地面或者接近地面的高度,第二个检测特征即检测速度。通过连续的视频帧,来计算身体质心或者骨骼点的速度,如果该速度超过给定阈值,跌倒事件发生。可以检测目标人体的质心下降速度[12][16]和头部的运动速度[10][11]以及多个骨骼点实时速度值的加权平均[14][15]等等,另外[16]中的作者对快速摔倒和慢速摔倒2种情况分别检测,检测的阈值条件有所不同。

跌到检测源码函数http://download.csdn.net/detail/baolinq/9798436

 

二、系统方案的最终选择

1)利用Kinect体感器的实时骨骼跟踪技术,选取人体的中心点(spinemid)、两髋中心(spinebase)、右脚掌(rightfoot)等3个骨骼点,实时计算人体中心点的空间位置、运动速度,以及两髋中心点的空间位置、离地面的高度以及在较低高度下停留的时间等参数。

2)如果人中心点的下降速度超过V(阈值速度),同时两髋中心点离地面高度低于H且停留时间大于T,则判定跌倒事件发生,系统会自动发出警报并切换到RGB画面,以及自动保存当前时刻的具体时间、深度图、骨骼图和所有骨骼坐标,并自动把现场重要信息通过邮件通知监护人。

3)实验结果表明:该检测系统的检测准确率可以达到91%以上。该系统正常工作时,只会显示深度图和骨骼图而没有RGB图,保护被监护人的个人隐私,Kinect不受光照影响,系统晚上也可以实时检测。Kinect无需穿戴,实用性和舒适性较好,不会影响老年人的日常活动,Kinect价格不高,比较容易和适合推广和使用。

 

三、检测跌倒事件

本检测系统只适用于空间不大的房间,该限制由Kinect的深度识别范围是

评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值