行为识别:行人跌倒检测(含源码)

本文介绍了ST-GCN(时空图卷积网络)在行为识别中的应用,主要用于检测如站立、行走、坐下、躺下、起身、坐下、摔倒等7类行为。ST-GCN首先构建骨架序列的图结构,通过空间图卷积和时空图卷积提取特征,再结合注意力机制和TCN(时序卷积网络)进行行为检测。模型包括YOLOv3-tiny行人检测、DeepSort行人跟踪和ST-GCN行为检测三个部分,实现了端到端训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文抛砖引玉为大家提供一个行为识别的案例,大家也可以根据该方法实现更多任务,也可以提供一些改进的方法。

本项目主要检测7类行为:StandingWalkingSittingLying DownStand upSit downFall Down。算法主要分三部分:

  • YOLOv3-tiny用于行人检测
  • DeepSort用于行人跟踪
  • ST-GCN用于行为检测

YOLO系列在笔者之前博客有讲解,DeepSort也比较常见(如有需要笔者另择时间讲解),本文主要讲一下ST-GCN方法。

ST-GCN

ST-GCN

ST-GCN结构图

给出一个动作视频的骨架序列信息,首先构造出表示该骨架序列信息的图结构,ST-GCN的输入就是图节点上的关节坐标向量,然后是一系列时空图卷积操作来提取高层的特征,最后用SofMax分类器得到对应的动作分类。整个过程实现了端到端的训练。

骨架的图结构

设一个有N个节点和T帧的骨架序列的时空图为G=(V,E),其节点集合为V={vti|t=1,…,T,i=1,…,N},第t帧的第i个节点的特征向量F(vti)由该节点的坐标向量和估计置信度组成。

图结构由两个部分组成:

  • 根据人体结构,将每一帧的节点连接成边,这些边形成spatial edges ES={vtivtj|(i,j)∈H}。H是一组自然连接的人体关节。
  • 将连续两帧中相同的节点连接成边,这些边形成temporal edges EF={vtiv(t+1)i}。

骨架

骨架结构

蓝色圆点表示身体关节。人体关节间的体内边缘是根据人体的自然联系来定义的。帧间边缘连接连续帧之间的相同关节。关节坐标用作ST-GCN的输入。

空间图卷积网络

以常见的图像的二维卷积为例,针对某一位置x的卷积输出可以写成如下形式:
f o u t ( x ) = ∑ h = 1 K ∑ w = 1 K f i n ( P ( x , h , w ) ) ⋅ W ( h , w ) (1) f_{out}(x)=\sum_{h=1}^K\sum_{w=1}^Kf_{in}(P(x,h,w))·W(h,w) \tag{1} fout(x)=h=1Kw=1Kfin(P(x,h,w))W(h,w)(1)
输入通道数为c的特征图fin,卷积核大小K×Ksampling function采样函数P(x,h,w)=x+P′(h,w)weight function通道数为c的权重函数。

(1)sampling function
在图像中,采样函数P(h,w)指的是以x像素为中心的周围邻居像素,在图中,邻居像素集合被定义为:
B ( v t i ) = { v t j ∣ d ( v t j , v t i ) ≤ D } (2) B(v_{ti})=\{v_{tj}|d(v_{tj},v_{ti})≤D\} \tag{2} B(vti)={vtjd(vtj,vti)D}(2)
d(vtj,vti)指的是从vtj到vti的最短距离,因此采样函数可以写成:
P ( v t i , v t j ) = v t j (3) P(v_{ti},v_{tj})=v_{tj} \tag{3} P(vti,vtj)=vtj(3)
(2)weight function
在2D卷积中,邻居像素规则地排列在中心像素周围,因此可以根据空间顺序用规则的卷积核对其进行卷积操作。类比2D卷积,在图中,将sampling function得到的邻居像素划分成不同的子集,每一个子集有一个数字标签,因此有lti : B(vti)→{0,…,K−1}。将一个邻居节点映射到对应的子集标签,权重方程为:
W ( v t i , v t j ) = W ′ ( l t i ( v t j ) ) (4) W(v_{ti},v_{tj})=W^{'}(l_{ti}(v_{tj})) \tag{4} W(vti,vtj)=W(lti(vtj))(4)
(3)空间图卷积

f o u t ( v t i ) = ∑ v t j ∈ B ( v t i ) 1 Z t i ( v t j ) f i n ( P ( v t i , v t j ) ) ⋅ W ( v t i , v t j ) (5) f_{out}(v_{ti})=\sum_{v_{tj}\in B(v_{ti})}\frac{1}{Z_{ti}(v_{tj})}f_{in}(P(v_{ti},v_{tj}))·W(v_{ti},v_{tj}) \tag{5} fout(vti)=vtjB(vti)Zti(vtj)1fin(P(vti,vtj))W(vti,vtj)(5)
其中,归一化项
Z t i ( v t j ) = ∣ { v t k ∣ l t i ( v t k ) = l t i ( v v t j ) } ∣ (6) Z_{ti}(v_{tj})=|\{v_{tk}|l_{ti}(v_{tk})=l_{ti}(v_{vtj})\}| \tag{6} Zti(vtj)={vtklti(vtk)=lti(vvtj)}(6)
等价于对应子集的基。将式(3)(4)代入式(5)得到:
f o u t ( v t i ) = ∑ v t j ∈ B ( v t i ) 1 Z t i ( v t j ) f i n ( v t j ) ⋅ W ( l t i ( v t j ) ) (7) f_{out}(v_{ti})=\sum_{v_{tj}\in B(v_{ti})}\frac{1}{Z_{ti}(v_{tj})}f_{in}(v_{tj})·W(l_{ti}(v_{tj})) \tag{7} fout(vti)=vtjB(vti)Zti(vtj)1fin(vtj)W(lti(vtj))(7)
(4)时空模型

将空间域模型扩展到时间域,得到采样函数:
B ( v t i ) = { v q j ∣ d ( v t j , v t i ) ≤ K , ∣ q − t ∣ ≤ ⌊ Γ / 2 ⌋ } (8) B(v_{ti})=\{v_{qj}|d(v_{tj},v_{ti})\leq K,|q-t|\leq\lfloor\Gamma/2\rfloor \} \tag{8} B(vti)={vqjd(vtj,vti)K,qtΓ/2⌋}(8)
参数 Γ \Gamma Γ控制时间域卷积核大小,weight function为
l S T ( v q j ) = l t i ( v t j ) + ( q − t + ⌊ Γ / 2 ⌋ ) × K (9) l_{ST}(v_{qj})=l_{ti}(v_{tj})+(q-t+\lfloor\Gamma/2\rfloor)\times K \tag{9} lST(vqj)=lti(vtj)+(qt+Γ/2⌋)×K(9)
其中, l t i ( v t j ) l_{ti}(v_{tj}) lti(vtj)是vti处单帧情况的标签映射。这样,就对构造的时空图定义了卷积运算。

划分子集

划分子集
(a)输入骨架的示例帧,身体关节用蓝点绘制。D=1的滤波器的接收域用红色虚线圆圈表示。

(b)唯一划分 Uni-labeling:将节点的1邻域划分为一个子集。

(c)基于距离的划分 Distance partitioning:将节点的1邻域划分为两个子集,节点本身子集与邻节点子集。

(d)空间构型划分 Spatial configuration partitioning:将节点的1邻域划分为3个子集,第一个子集连接了空间位置上比根节点更远离整个骨架的邻居节点,第二个子集连接了更靠近中心的邻居节点,第三个子集为根节点本身,分别表示了离心运动、向心运动和静止的运动特征。

注意力机制

在运动过程中,不同的躯干重要性是不同的。例如腿的动作可能比脖子重要,通过腿部我们甚至能判断出跑步、走路和跳跃,但是脖子的动作中可能并不包含多少有效信息。

因此,ST-GCN 对不同躯干进行了加权(每个 ST-GCN单元都有自己的权重参数用于训练)。

TCN

GCN 帮助我们学习了到空间中相邻关节的局部特征。在此基础上,我们需要学习时间中关节变化的局部特征。如何为 Graph 叠加时序特征,是图卷积网络面临的问题之一。这方面的研究主要有两个思路:时间卷积(TCN)和序列模型(LSTM)。

ST-GCN 使用的是 TCN,由于形状固定,可以使用传统的卷积层完成时间卷积操作。为了便于理解,可以类比图像的卷积操作。ST-GCN 的 feature map最后三个维度的形状为(C,V,T),与图像 feature map的形状(C,W,H)相对应。

  • 图像的通道数C对应关节的特征数C。
  • 图像的宽W对应关键帧数V。
  • 图像的高H对应关节数T。

在图像卷积中,卷积核的大小为w×1,则每次完成 w 行像素,1 列像素的卷积。stride为 s,则每次移动 s 像素,完成 1 行后进行下 1 行像素的卷积。

在时间卷积中,卷积核的大小为temporal_kernel_size×1,则每次完成 1 个节点,temporal_kernel_size个关键帧的卷积。stride为 1,则每次移动1帧,完成1个节点后进行下1个节点的卷积。

训练

在这里插入图片描述
输入的数据首先进行batch normalization,然后在经过9个ST-GCN单元,接着是一个global pooling得到每个序列的256维特征向量,最后用SoftMax函数进行分类,得到最后的标签。

每一个ST-GCN采用Resnet的结构,前三层的输出有64个通道,中间三层有128个通道,最后三层有256个通道,在每次经过ST-CGN结构后,以0.5的概率随机将特征dropout,第4和第7个时域卷积层的strides设置为2。用SGD训练,学习率为0.01,每10个epochs学习率下降0.1。

ST-GCN 最末卷积层的响应可视化结果图如下:
在这里插入图片描述

Models
gitee仓库(仓库的Models文件夹使用上面Models包替换,否则会有模型序列化问题)
备用源码

参考

[1].ST-GCN论文

[2].ST-GCN笔记

[3].ST-GCN官方代码

补:基于几何判断的跌倒检测算法

<think>嗯,用户想了解深度可分离卷积在TCN中的应用,以及模型结构和应用场景。首先,我需要回顾一下TCN的基本结构。TCN主要用于时间序列处理,核心包括因果卷积和扩张卷积,确保不泄露未来信息并扩大感受野。然后,深度可分离卷积是将标准卷积分解为深度卷积和逐点卷积,这样可以减少参数量和计算量,适用于移动端或实时应用。 接下来,要确定用户的问题点。他们可能想知道如何将深度可分离卷积整合到TCN中,以及这样做的好处。需要解释在TCN的残差块中,如何用深度可分离卷积替换标准卷积层,比如在膨胀卷积部分。同时,要提到这样的改动如何影响模型性能,比如参数减少但可能牺牲一些精度,适用于资源受限的场景。 然后,应用场景方面,TCN本身适用于时间序列预测、语音识别、动作识别等。结合深度可分离卷积后,可能更适合移动设备上的实时预测、物联网设备或需要低延迟的场合。需要举例说明,比如移动端的心电图监测或工业传感器数据的实时分析。 还要注意引用相关的资料,比如TCN最初由Shaojie Bai提出,以及深度可分离卷积在TCN中的具体实现方式。用户可能对实现细节感兴趣,所以可能需要提到PyTorch或TensorFlow中的代码结构,比如如何构建深度可分离的卷积层,并嵌入到TCN的残差块中。 此外,用户可能想知道这种结构的优缺点,比如轻量化带来的优势,但也可能面临训练难度增加或精度下降的问题。需要平衡这些点,给出实际应用中的建议,比如在资源受限时选择深度可分离TCN,否则使用标准TCN。 最后,生成相关问题时要覆盖结构优化、应用场景比较、参数影响以及具体实现方法,确保用户能进一步探索相关内容。确保所有数学公式正确使用$...$和$$...$$格式,并正确引用参考文献。</think>### 深度可分离卷积 TCN 的模型架构与应用场景 #### 1. 模型架构解析 深度可分离卷积 TCN 结合了传统 TCN 的时序建模能力和深度可分离卷积的高效特性。其核心组件包括: - **因果卷积(Causal Convolution)**:确保输出仅依赖于当前及历史时刻的输入,避免未来信息泄露,数学形式为: $$y_t = \sum_{k=0}^{K-1} w_k \cdot x_{t-k}$$ - **扩张卷积(Dilated Convolution)**:通过间隔采样扩大感受野,公式为: $$y_t = \sum_{k=0}^{K-1} w_k \cdot x_{t-d \cdot k}$$ 其中 $d$ 为扩张因子[^2]。 - **深度可分离卷积(Depthwise Separable Convolution)**:将标准卷积分解为**深度卷积**(逐通道处理)和**逐点卷积**(通道融合),参数量减少为传统卷积的 $\frac{1}{通道数}+\frac{1}{卷积核尺寸}$[^4]。 **典型残差块结构**: ```python class DepthwiseSeparableTCNBlock(nn.Module): def __init__(self, in_ch, out_ch, dilation): super().__init__() self.depthwise = nn.Conv1d(in_ch, in_ch, kernel_size=3, dilation=dilation, groups=in_ch) self.pointwise = nn.Conv1d(in_ch, out_ch, kernel_size=1) self.res_conv = nn.Conv1d(in_ch, out_ch, 1) if in_ch != out_ch else None def forward(self, x): y = F.relu(self.depthwise(x)) y = self.pointwise(y) res = x if self.res_conv is None else self.res_conv(x) return F.relu(y + res) ``` #### 2. 核心优势对比 | 特性 | 标准TCN | 深度可分离TCN | |---------------------|----------------|--------------------| | 参数量 | $O(K \cdot C^2)$ | $O(K \cdot C + C^2)$ | | 计算复杂度 | 高 | 降低60-80% | | 时序依赖捕捉能力 | 强 | 略微下降 | | 硬件适配性 | 通用GPU | 移动端/边缘设备 | #### 3. 应用场景 1. **移动端时间序列预测** 如手机端的心律异常检测,通过轻量化模型实现实时分析[^3]。 2. **工业物联网时序分析** 对传感器数据(温度、振动)进行实时故障预警。 3. **语音指令识别** 在智能家居设备中实现低延迟语音指令解析。 4. **视频动作预测** 结合时空特征处理连续帧动作,如跌倒检测。 #### 4. 实现建议 - **输入标准化**:使用时序标准化层(如Instance Normalization) - **超参数选择**:扩张因子建议按 $2^n$ 指数增长,如 $[1,2,4,8,...]$ - **正则化方法**:搭配Dropout(概率0.2-0.3)和权重衰减(1e-4)
评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值