机器学习之正则化

吴恩达机器学习
上一篇 主目录 下一篇

前言
正则化可以解决 过度拟合 的问题,本文介绍在代价函数中引入正则化参数,以及对线性回归和逻辑回归模型正则化


1. 代价函数的正则化参数

上面的回归问题中如果我们的模型是:
在这里插入图片描述
我们可以从之前的事例中看出,正是那些高次项导致了过拟合的产生,所以如果我们能让这些高次项的系数接近于 0 的话,我们就能很好的拟合了。所以我们要做的就是在一定程度上减小这些参数 θ 的值,这就是正则化的基本方法。
我们决定要减少θ3 和θ4 的大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值