吴恩达机器学习 上一篇 主目录 下一篇 文章结构 1. 代价函数的正则化参数 2. 正则化线性回归 3. 正则化的逻辑回归模型 【前言】 正则化可以解决 过度拟合 的问题,本文介绍在代价函数中引入正则化参数,以及对线性回归和逻辑回归模型正则化 1. 代价函数的正则化参数 上面的回归问题中如果我们的模型是: 我们可以从之前的事例中看出,正是那些高次项导致了过拟合的产生,所以如果我们能让这些高次项的系数接近于 0 的话,我们就能很好的拟合了。所以我们要做的就是在一定程度上减小这些参数 θ 的值,这就是正则化的基本方法。 我们决定要减少θ3 和θ4 的大