正则化项 笔记

正则化项

正则化项或正则惩罚项一般位于损失函数的后面,用于与经验风险构成结构风险,通过使其最小化使模型到达最优值。例如下式:

min ⁡ f ∈ F [ 1 N ∑ i = 1 N L ( y i , f ( x i ) ) + λ J ( f ) ] \min_{f\in F}[\frac{1}{N}\sum_{i=1}^{N}L(y_i,f(x_i))+\lambda J(f)] fFmin[N1i=1NL(yi,f(xi))+λJ(f)]

其中L为经验风险, J ( ⋅ ) J(·) J()是度量模型 f f f复杂度的函数, λ \lambda λ为控制经验风险和模型复杂度的权重,通常大于0。当最小化结构风险时,我们不仅要考虑最小化经验风险,同时还要考虑模型复杂度。因为在训练过程中如果仅考虑经验风险,模型可能由于迭代次数过多等原因产生“过拟合”现象,即模型训练地过于复杂,完全拟合训练数据,此时经验风险损失较低甚至达到0,但对测试数据的拟合性较差,在测试数据集上无法取得较好结果。此时我们就需要一个额外的条件来约束模型的复杂度,这就是正则项的主要作用。正则项越小表明模型越简单,产生过拟合的可能性就越小,但同时也可能使模型的拟合能力下降发生欠拟合,因此这里的 λ \lambda λ就是对模型准确率和惩罚项的一个权衡。过拟合欠拟合情况如下图所示:
在这里插入图片描述
这里用上图举个例子,假设存在样本 n 1 , n 2 , n 3 . . . n_1,n_2,n_3... n1,n2,n3...现在想通过一个多项式对其进行拟合。当我们仅考虑经验风险时,多项式可能为5次多项式,即 θ 0 + θ 1 x + θ 2 x 2 + θ 3 x 3 + θ 4 x 4 + θ 5 x 5 \theta_0+\theta_1x+\theta_2x^2+\theta_3x^3+\theta_4x^4+\theta_5x^5 θ0+θ1x+θ2x2+θ3x3+θ4x4+θ5x5,此时模型对训练数据的效果比较好,但是在对新的数据进行测试时则会产生过拟合现象,和真实结果偏差较大。而当我们引入正则项时,在优化过程中需要考虑模型复杂度,最终可能导致 x 4 x^4 x4 x 5 x^5 x5项的系数 θ 4 \theta_4 θ4 θ 5 \theta_5 θ5为0,使五次多项式变为三次多项式 θ 0 + θ 1 x + θ 2 x 2 + θ 3 x 3 \theta_0+\theta_1x+\theta_2x^2+\theta_3x^3 θ0+θ1x+θ2x2+θ3x3,尽管此时多项式对训练数据的拟合程度降低,但其对测试数据的拟合程度却升高,达到了训练数据和测试数据之间的平衡,这就是正则项在优化模型上的作用。(注:其同样可应用与深度学习模型上)

常见的正则化项:

以下是两种最常见的几种正则化项:

这里我们用W表示模型中的参数矩阵

L1正则: J ( W ) = ∑ i ∑ j ∣ W i , j ∣ J(W) = \sum_i \sum_j |W_{i,j}| J(W)=ijWi,j

L2正则: J ( W ) = ∑ i ∑ j W i , j 2 J(W)=\sum_i\sum_jW^2_{i,j} J(W)=ijWi,j2

以上两个正则化项的主要区别是:

L1会趋向于产生少量的特征,而其他的特征都是0,也就是让W参数矩阵趋向稀疏化。

L2会选择更多的特征,这些特征都会接近于0。

这里我们用一个可视化的方法直观理解为什么L1正则项会趋向使W参数矩阵稀疏化:

为了便于理解,这里我们仅考虑二维情况,在 ( W 1 , W 2 ) (W_1,W_2) W1,W2平面上对目标函数和正则项进行可视化,其中右上角为目标函数的等高线,而l1和l2正则项分别表示为一个矩形和一个圆形。上面我们已介绍过,对结构风险优化实际上就是找到经验风险(目标函数)和正则项的一个权衡,在空间中则表示二者的交点(也就是满足二者的最优值)。可以看到,L1与目标函数相交的位置通常在坐标轴上,这些点通常表示存在某些参数为0的情况(部分W为0),因此最终会导致特征矩阵变得更加稀疏。

参考:
https://blog.csdn.net/pxhdky/article/details/83544932
https://blog.csdn.net/Vodka_Lou/article/details/116083870
https://blog.csdn.net/weixin_41432734/article/details/111317719

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值