逻辑回归
预备知识
逻辑回归主要应用于二分类问题,公式: p = s i g m o i d ( z ) = 1 1 + e − z p = sigmoid(z) = \frac{1}{1+e^{-z}} p=sigmoid(z)=1+e−z1 梯度回传公式为: ∂ p ∂ z = p ( 1 − p ) \frac{\partial p}{\partial z}=p(1-p) ∂z∂p=p(1−p)
损失函数我们用二分类交叉熵(BCE, binary_cross_entropy),假设y为标签,p为预测概率: l o s s = − y l o g ( p ) − ( 1 − y ) l o g ( 1 − p ) loss = -ylog(p)-(1-y)log(1-p) loss=−ylog(p)−(1−y)log(1−p) 梯度回传公式为:
∂ l o s s ∂ p = − y p + 1 − y 1 − p \frac{\partial loss}{\partial p} = -\frac{y}{p}+\frac{1-y}{1-p} ∂p∂loss=−py+1−p1−y
实现案例
我们这里实现一个包含两个隐藏层,无偏置项的分类器,假设我们输入为 x x x,标签为 y y y, 两个全连接层的权重为 w 1 w_1 w1和 w 2 w_2 w2, 我们可以用下面的公式表示输出:
h 1 = w 1 x h 2 = w 2 h 1 p = s i g m o i d ( h