四个框架numpy, tensorflow, keras, pytorch分别实现逻辑回归分类算法,实现梯度计算与参数更新

逻辑回归

预备知识

逻辑回归主要应用于二分类问题,公式: p = s i g m o i d ( z ) = 1 1 + e − z p = sigmoid(z) = \frac{1}{1+e^{-z}} p=sigmoid(z)=1+ez1 梯度回传公式为: ∂ p ∂ z = p ( 1 − p ) \frac{\partial p}{\partial z}=p(1-p) zp=p(1p)

损失函数我们用二分类交叉熵(BCE, binary_cross_entropy),假设y为标签,p为预测概率: l o s s = − y l o g ( p ) − ( 1 − y ) l o g ( 1 − p ) loss = -ylog(p)-(1-y)log(1-p) loss=ylog(p)(1y)log(1p) 梯度回传公式为:
∂ l o s s ∂ p = − y p + 1 − y 1 − p \frac{\partial loss}{\partial p} = -\frac{y}{p}+\frac{1-y}{1-p} ploss=py+1p1y

实现案例

我们这里实现一个包含两个隐藏层,无偏置项的分类器,假设我们输入为 x x x,标签为 y y y, 两个全连接层的权重为 w 1 w_1 w1 w 2 w_2 w2, 我们可以用下面的公式表示输出:
h 1 = w 1 x h 2 = w 2 h 1 p = s i g m o i d ( h

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值