HDU ACM1197——Specialized Four-Digit Numbers

41 篇文章 0 订阅
34 篇文章 0 订阅

Specialized Four-Digit Numbers

Problem Description

Find and list all four-digit numbers in decimal notation that have the property that the sum of its four digits equals the sum of its digits when represented in hexadecimal (base 16) notation and also equals the sum of its digits when represented in duodecimal (base 12) notation.

For example, the number 2991 has the sum of (decimal) digits 2+9+9+1 = 21. Since 2991 = 1*1728 + 8*144 + 9*12 + 3, its duodecimal representation is 1893(12), and these digits also sum up to 21. But in hexadecimal 2991 is BAF16, and 11+10+15 = 36, so 2991 should be rejected by your program.

The next number (2992), however, has digits that sum to 22 in all three representations (including BB016), so 2992 should be on the listed output. (We don’t want decimal numbers with fewer than four digits - excluding leading zeroes - so that 2992 is the first correct answer.)

Input

There is no input for this problem.

Output

Your output is to be 2992 and all larger four-digit numbers that satisfy the requirements (in strictly increasing order), each on a separate line with no leading or trailing blanks, ending with a new-line character. There are to be no blank lines in the output. The first few lines of the output are shown below.

Sample Input

There is no input for this problem.

Sample Output

2992
2993
2994
2995
2996
2997
2998
2999

#include<stdio.h>
int f(int n,int m){     /*m代表是几进制*/ 
    int a=0;
    while(n>0){
    a=a+n%m;
    n=n/m;
    }
    return a;
} 
int main()
{
    int i,a,b,c;
    for(i=2992;i<=9999;i++){
        a=f(i,10);  /*十进制各位和*/ 
        b=f(i,12);
        c=f(i,16);
        if(a==b && a==c)printf("%d\n",i);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值