13、基于列生成启发式与变量合并进化算法的研究

基于列生成启发式与变量合并进化算法的研究

1. 时间装箱问题的列生成启发式算法

在时间装箱问题中,当存在大量不同类型的虚拟机时,数据里会出现需求相同且连续的虚拟机。为了简化问题,我们可以将这样的一系列请求合并成一个,以此减少请求数量。然而,这种方法虽在长时间需求的虚拟机数据集上效果不错,但对其他数据集并无优势。此外,若修改算法,让新请求与相同配置的旧请求放在同一位置,服务器数量最多仅能优化1台,甚至在某些情况下,还会多需1台服务器。

在计算下界时,仅考虑两个时间点存在一定弊端。若想让列生成下界(ColGenLB)产生远离最优解的结果,可以利用问题的动态特性。例如,选择虚拟机时,使相近时间点(t1和t2)的静态问题最优解差异巨大,导致无法从t1时刻的最优解过渡到t2时刻的最优解。此时,动态解决方案在这两个时间点中的某一个所需的服务器数量会远多于静态解决方案,从而使ColGenLB的结果不够准确。

下面通过表格展示不同处理方式的效果:
| 处理方式 | 长时间需求虚拟机数据集效果 | 其他数据集效果 | 服务器数量优化情况 |
| — | — | — | — |
| 合并请求 | 良好 | 无优势 | 最多优化1台,部分情况多需1台 |
| 特定算法修改 | - | - | 最多优化1台,部分情况多需1台 |

2. (1+1)-进化算法及其改进

(1+1)-进化算法((1+1)-EA)在理论和实践研究中都备受关注。它基于随机突变方案,是许多进化和遗传算法的基本操作。然而,该算法虽然在优化某些“模型”函数(如ONEMAX、线性函数)时有效,但在最坏情况下效率极低,其最坏情况估计为$n^n$,甚至比随机选

C语言-光伏MPPT算法:电导增量法扰动观察法+自动全局搜索Plecs最大功率跟踪算法仿真内容概要:本文档主要介绍了一种基于C语言实现的光伏最大功率点跟踪(MPPT)算法,结合电导增量法扰动观察法,并引入自动全局搜索策略,利用Plecs仿真工具对算法进行建模仿真验证。文档重点阐述了两种经典MPPT算法的原理、优缺点及其在不同光照和温度条件下的动态响应特性,同时提出一种改进的复合控制策略以提升系统在复杂环境下的跟踪精度稳定性。通过仿真结果对比分析,验证了所提方法在快速性和准确性方面的优势,适用于光伏发电系统的高效能量转换控制。; 适合人群:具备一定C语言编程基础和电力电子知识背景,从事光伏系统开发、嵌入式控制或新能源技术研发的工程师及高校研究人员;工作年限1-3年的初级至中级研发人员尤为适合。; 使用场景及目标:①掌握电导增量法扰动观察法在实际光伏系统中的实现机制切换逻辑;②学习如何在Plecs中搭建MPPT控制系统仿真模型;③实现自动全局搜索以避免传统算法陷入局部峰值问题,提升复杂工况下的最大功率追踪效率;④为光伏逆变器或太阳能充电控制器的算法开发提供技术参考实现范例。; 阅读建议:建议读者结合文中提供的C语言算法逻辑Plecs仿真模型同步学习,重点关注算法判断条件、步长调节策略及仿真参数设置。在理解基本原理的基础上,可通过修改光照强度、温度变化曲线等外部扰动因素,进一步测试算法鲁棒性,并尝试将其移植到实际嵌入式平台进行实验验证。
【无人机协同】动态环境下多无人机系统的协同路径规划防撞研究(Matlab代码实现)​ 内容概要:本文围绕动态环境下多无人机系统的协同路径规划防撞问题展开研究,提出基于Matlab的仿真代码实现方案。研究重点在于在复杂、动态环境中实现多无人机之间的高效协同飞行避障,涵盖路径规划算法的设计优化,确保无人机集群在执行任务过程中能够实时规避静态障碍物动态冲突,保障飞行安全性任务效率。文中结合智能优化算法,构建合理的成本目标函数(如路径长度、飞行高度、威胁规避、转弯角度等),并通过Matlab平台进行算法验证仿真分析,展示多机协同的可行性有效性。; 适合人群:具备一定Matlab编程基础,从事无人机控制、路径规划、智能优化算法研究的科研人员及研究生。; 使用场景及目标:①应用于灾害救援、军事侦察、区域巡检等多无人机协同任务场景;②目标是掌握多无人机系统在动态环境下的路径规划防撞机制,提升协同作业能力自主决策水平;③通过Matlab仿真深入理解协同算法的实现逻辑参数调优方法。; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注目标函数设计、避障策略实现多机协同逻辑,配合仿真结果分析算法性能,进一步可尝试引入新型智能算法进行优化改进。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 StudentInfo 基于SSM的学生信息管理系统(选课) 已停更 项目简介: 由SpringMVC+MyBatis为主要框架,mysql8.0配置主从复制实现读写分离,主机丛机分别为腾讯云的服务器,而项目部署在阿里云上。 前端主要由bootstrap完成,背景用particles.js插件。 数据库交互查询用到pagehelper分页。 在添加修改相关功能时通过ajax来验证其主键是否存在可用。 代码层次清晰,输入框约束较高,已配置登录拦截。 一、应用技术 #### 工具:eclipse、navicat 环境:JDK1.8、tomcat9.0、mysql8.0 前端:JavaScript、jQuery、bootstrap4、particles.js 后端:maven、SpringMVC、MyBatis、ajax、mysql读写分离、mybatis分页 二、功能 #### 这是在上个springmvc选课系统的基础上进行修改完善的,目前功能基本相同,修复诸多bug,上个系统中有详细介绍:B/S基于springMVC的网上选课系统 主要功能模块图: 新增: 增加分页查询 输入框约束 学号、身份证、课程编号、教师编号只能输入数字,并且有最大输入限制,其中学号固定12位,若小于12位将会有提示。 姓名只能输入中文。 几乎所有输入框不能输入空格等约束 下拉框联动 添加、修改课程采用二级联动,即所属系别——所属专业; 添加、修改学生采用三级联动,即系别——专业——班级。 (三级联动代码有些复杂,因为JavaScript学的不好=-=)。 ajax+springmvc验证 用于验证学号、课程编号、教师...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值