6、基于数据驱动机器学习模型的小行星光谱分类研究

基于数据驱动机器学习模型的小行星光谱分类研究

1. 极端学习机(ELM)原理

极端学习机(ELM)是一种单隐层前馈神经网络,其输出权重可以直接通过解析方式计算,无需迭代反向传播更新参数,具有高效和灵活的特点。

1.1 相关参数与矩阵定义

  • $\beta \in \mathbb{R}^{L \times C}$:表示连接隐藏层和输出层的输出权重矩阵。
  • $\xi = [\xi_1, \xi_2, \ldots, \xi_N]^T \in \mathbb{R}^{N \times C}$:是关于训练数据的预测误差矩阵。
  • $H \in \mathbb{R}^{N \times L}$:隐藏层输出矩阵,其计算方式如下:
    [
    H =
    \begin{bmatrix}
    h(w_1^T x_1 + b_1) & \cdots & h(w_1^T x_1 + b_L) \
    \vdots & \ddots & \vdots \
    h(w_1^T x_N + b_1) & \cdots & h(w_1^T x_N + b_L)
    \end{bmatrix}
    ]
    其中,$h(\cdot)$ 是隐藏层的激活函数,如 sigmoid 函数;$W = [w_1, w_2, \ldots, w_L] \in \mathbb{R}^{d \times L}$ 和 $b = [b_1, b_2, \ldots, b_L]^T \in \mathbb{R}^{L}$ 分别表示随机生成的输入权重和偏置。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值