10、运动规划与几何表示:原理、方法与应用

运动规划与几何表示:原理、方法与应用

1. 运动规划概述

运动规划主要聚焦于连续状态空间中的规划问题,也可称为连续状态空间规划。其核心在于为机器人或其他运动物体在包含障碍物的 2D 或 3D 世界中规划合适的运动路径,使其能在不碰撞障碍物的前提下抵达目标状态。

1.1 关键主题

  • 隐式表示 :规划算法需处理状态空间的隐式表示,在运动规划中尤为重要,因为状态空间是不可数无限的,且模型定义的世界与规划空间间存在复杂变换。这里引入了配置空间的概念,其维度对应机器人的自由度,运动规划可视为在包含隐式障碍物的高维配置空间中进行搜索,同时要正确刻画配置空间的拓扑结构以确保算法正常运行,运动计划则被定义为配置空间中的连续路径。
  • 连续转离散 :将连续模型转化为离散模型是运动规划的核心主题。实现这一转化有两种方法:
    • 组合运动规划 :从输入模型构建精确表示原问题的离散表示,可实现完全规划,能保证在有解时找到解,无解时正确报告失败。
    • 基于采样的运动规划 :利用碰撞检测方法对配置空间进行采样,并基于这些样本进行离散搜索。这种方法牺牲了完全性,但常以分辨率完全性或概率完全性等较弱概念替代。

1.2 方法优缺点对比

方法 优点 缺点
组合运动规划 能解决几乎所有运动规划问题,在某些受限情况下可高效构建优雅解决方案 对于大多数“工业级”问题,运行时间长且实现难度大
基于采样的运动规划 近年来解决了多个领域的挑战性问题,效率高且易于实现 完全性保证较弱

2. 几何表示与变换

2.1 几何建模

几何建模有边界表示和实体表示两种常见方法。在定义世界时,通常有 2D 世界($W = R^2$)和 3D 世界($W = R^3$)两种选择。世界中一般包含障碍物和机器人两类实体。

2.2 多边形和多面体模型

2.2.1 凸多边形
  • 边界表示 :用顶点和边描述 m 边形,顶点对应多边形的“角”,边是顶点间的线段,多边形可由按逆时针顺序的 m 个点序列指定。
  • 实体表示 :可表示为 m 个半平面的交集,每个半平面是位于多边形某边所在直线一侧的所有点的集合。对于多边形的边,可通过两点确定直线方程 $ax + by + c = 0$,定义函数 $f(x, y) = ax + by + c$,根据 $f(x, y)$ 的正负划分半平面。
2.2.2 非凸多边形

非凸多边形可表示为多个凸多边形的并集,即 $O = O_1 ∪ O_2 ∪ · · · ∪ O_n$,每个 $O_i$ 用半平面表示。可通过布尔代数法则简化复杂的表示,避免集合差运算。非凸多边形的表示不唯一,分解时需考虑计算性能,可采用垂直单元分解算法。

2.2.3 定义逻辑谓词

可定义逻辑谓词作为碰撞检测器,对于凸多边形区域,用逻辑合取表示;对于由多个凸多边形组成的障碍物区域,用逻辑析取的合取表示。该谓词可在 $O(n)$ 时间内检查点是否在障碍物区域内,逻辑谓词表示与集合论表示有方便的对应关系。

2.2.4 多面体模型
  • 边界表示 :在 3D 世界中,多面体用顶点、边和面表示,可使用双连通边列表等数据结构方便地遍历多面体特征。
  • 实体表示 :对于凸多面体,可从顶点构建实体表示,每个面至少有三个不共线的顶点,可确定通过这些顶点的平面方程。

2.3 运动规划相关扩展

运动规划还有一些扩展问题,如避免移动障碍物、多机器人协调、操作规划和闭运动链规划等。这些问题基于前面章节的原理,但每个扩展都带来了新的挑战。

2.4 过渡章节内容

有一个过渡章节,涉及运动规划的多个元素,同时关注在执行过程中从意外偏差中优雅恢复。该章节将规划的概念重新定义为状态空间上的函数,允许实际配置偏离命令配置,以减少后续对不确定性显式建模的成本。

3. 总结

运动规划在机器人、分子模拟等多个领域有广泛应用。理解运动规划的原理和方法,包括隐式表示、连续转离散的处理方式,以及掌握几何建模和变换的技巧,对于解决实际问题至关重要。不同的运动规划方法各有优缺点,需根据具体问题选择合适的方法。在几何建模中,多边形和多面体的表示方法为后续的运动规划提供了基础,逻辑谓词的定义则有助于实现碰撞检测等功能。未来,随着技术的发展,运动规划有望在更多领域发挥重要作用,解决更复杂的问题。

graph LR
    A[运动规划] --> B[隐式表示]
    A --> C[连续转离散]
    B --> D[配置空间]
    C --> E[组合运动规划]
    C --> F[基于采样的运动规划]
    G[几何建模] --> H[边界表示]
    G --> I[实体表示]
    J[多边形和多面体模型] --> K[凸多边形]
    J --> L[非凸多边形]
    J --> M[多面体模型]
    K --> N[边界表示]
    K --> O[实体表示]
    L --> P[逻辑谓词]
    M --> Q[边界表示]
    M --> R[实体表示]

以上内容涵盖了运动规划的基本概念、几何表示方法以及相关扩展问题,通过列表、表格和流程图等形式,更清晰地展示了各部分之间的关系和特点。

4. 隐式表示与配置空间深入解析

4.1 隐式表示的重要性

在运动规划里,隐式表示极为关键。由于状态空间是不可数无限的,且模型定义世界与规划空间存在复杂变换,规划算法必须处理这种隐式表示。例如,在为机器人规划路径时,机器人所处的环境状态不能简单直接地全部列举出来,而是以一种隐式的方式存在于状态空间中。

4.2 配置空间的特性

配置空间的维度与机器人的自由度相对应。比如,一个简单的二维平面上的机器人,若其可以在平面上自由移动且能转动,那么它就有三个自由度(两个移动方向和一个转动方向),其配置空间就是三维的。配置空间还具有不寻常的拓扑结构,这对规划算法的正确运行有着重要影响。如果不能正确刻画这种拓扑结构,规划算法可能会得出错误的路径规划结果。例如,在某些具有环形拓扑结构的配置空间中,如果没有正确处理,算法可能会陷入局部最优,无法找到全局最优路径。

4.3 运动计划与配置空间路径

运动计划在配置空间中被定义为连续路径。这意味着机器人从起始状态到目标状态的运动过程,在配置空间中可以用一条连续的曲线来表示。这条曲线要避开配置空间中隐式表示的障碍物,确保机器人在实际运动中不会与障碍物发生碰撞。例如,在一个包含多个障碍物的二维平面环境中,机器人的配置空间中会有相应的障碍物区域,运动计划就是要找到一条从起始点到目标点且不穿过这些障碍物区域的连续路径。

5. 连续转离散方法详解

5.1 组合运动规划

5.1.1 原理

组合运动规划从输入模型构建离散表示,这种离散表示能精确代表原问题。它通过对问题进行精确的数学建模和分析,将连续的状态空间转化为离散的结构。例如,在处理一个复杂的机器人运动规划问题时,会把机器人的运动空间和障碍物信息进行精确的划分和表示,构建出一个离散的模型。

5.1.2 优点与局限性

优点在于它是完全规划方法,只要问题有解,就一定能找到解;若无解,也能正确报告。但对于大多数“工业级”运动规划问题,其运行时间长,实现难度大。比如在大型工厂的自动化生产线上,为多个机器人规划运动路径时,组合运动规划算法可能需要大量的计算资源和时间,而且实现起来非常复杂,需要专业的技术人员进行操作和调试。

5.2 基于采样的运动规划

5.2.1 原理

基于采样的运动规划利用碰撞检测方法对配置空间进行采样,并基于这些样本进行离散搜索。它不会像组合运动规划那样精确地构建整个离散模型,而是通过随机或有策略地在配置空间中选取一些样本点,然后在这些样本点之间进行搜索。例如,在一个复杂的三维环境中,算法会随机选取一些点作为样本,检查这些点是否与障碍物发生碰撞,然后根据这些样本点构建一个离散的搜索图。

5.2.2 优点与局限性

其优点是效率高且易于实现,近年来在多个领域解决了许多挑战性问题,如汽车装配、人形机器人规划和药物设计中的构象分析等。然而,它牺牲了完全性,不过常以分辨率完全性或概率完全性等较弱概念替代。也就是说,它不能保证一定能找到问题的解,但在大多数情况下,能在可接受的时间内找到一个近似解。

5.3 两种方法对比

方法 原理 完全性 运行时间 实现难度 适用场景
组合运动规划 从输入模型构建精确离散表示 完全规划,有解必能找到 对解的完整性要求极高,问题规模较小的场景
基于采样的运动规划 对配置空间采样并基于样本搜索 分辨率或概率完全性 问题规模大,对效率要求高的场景

6. 几何建模方法应用

6.1 边界表示与实体表示的选择

在几何建模中,边界表示和实体表示各有适用场景。边界表示适用于对物体表面特征描述要求较高的情况,例如在设计一个具有复杂外形的机器人时,通过边界表示可以精确地描述机器人的表面形状。而实体表示更侧重于描述物体内部的空间信息,比如在模拟一个装满液体的容器时,实体表示可以准确地表示容器内部的空间范围。

6.2 多边形和多面体模型的实际应用

6.2.1 凸多边形应用

在二维平面的运动规划中,凸多边形模型非常实用。例如,在室内地图导航中,房间的墙壁、障碍物等可以用凸多边形来表示。通过将这些凸多边形进行组合,可以构建出整个室内环境的模型。在规划机器人在室内的运动路径时,就可以基于这些凸多边形模型进行路径搜索。

6.2.2 非凸多边形应用

非凸多边形可以用于表示更复杂的障碍物形状。在一些不规则的环境中,如野外地形中的岩石、树木等障碍物,可能是非凸的。通过将非凸多边形分解为多个凸多边形的并集,可以方便地对这些障碍物进行建模和处理。

6.2.3 多面体模型应用

在三维空间的运动规划中,多面体模型是必不可少的。例如,在航空航天领域,对飞行器的运动规划需要考虑三维空间中的障碍物,如山脉、其他飞行器等。这些障碍物可以用多面体来表示,通过对多面体模型的处理,可以为飞行器规划出安全的飞行路径。

6.3 逻辑谓词在碰撞检测中的应用

逻辑谓词在碰撞检测中起着关键作用。通过定义逻辑谓词,可以快速判断一个点是否在障碍物区域内。在实际的运动规划算法中,碰撞检测是一个频繁执行的操作,逻辑谓词的高效性可以大大提高算法的运行效率。例如,在一个实时的机器人运动控制系统中,需要不断地检测机器人的当前位置是否与障碍物发生碰撞,逻辑谓词可以在短时间内给出判断结果,保证机器人的安全运动。

7. 运动规划扩展问题与挑战

7.1 避免移动障碍物

在实际环境中,很多障碍物是移动的,如道路上的车辆、行人等。为机器人规划路径时,需要考虑这些移动障碍物的运动轨迹和速度。这就要求运动规划算法能够实时获取障碍物的运动信息,并动态调整机器人的运动路径。例如,在自动驾驶汽车的运动规划中,需要通过传感器实时获取周围车辆和行人的运动信息,然后根据这些信息为汽车规划出安全的行驶路径。

7.2 多机器人协调

当多个机器人在同一环境中工作时,需要进行协调规划,避免它们之间发生碰撞,同时提高整体工作效率。这涉及到多机器人之间的通信、任务分配和路径规划等问题。例如,在一个仓库的自动化物流系统中,多个搬运机器人需要在仓库内协同工作,它们需要通过通信系统共享信息,合理分配任务,并规划出互不干扰的运动路径。

7.3 操作规划

操作规划主要涉及机器人对物体的操作,如抓取、搬运等。在进行操作规划时,需要考虑机器人的操作能力、物体的物理特性和环境约束等因素。例如,在一个工业生产线上,机器人需要抓取不同形状和重量的零件进行组装,操作规划算法需要根据零件的特性和生产线的布局,为机器人规划出合适的操作路径和动作。

7.4 闭运动链规划

闭运动链规划是指机器人的某些部分形成封闭的运动链,如机械臂的关节连接形成闭链。这种情况下,运动规划的难度会增加,因为闭运动链的运动具有一定的约束条件。例如,在一些复杂的机械装置中,闭运动链的运动需要满足特定的几何和力学条件,运动规划算法需要考虑这些约束条件,为机器人规划出可行的运动路径。

graph LR
    A[连续转离散] --> B[组合运动规划]
    A --> C[基于采样的运动规划]
    B --> D[精确离散表示]
    B --> E[完全规划]
    C --> F[配置空间采样]
    C --> G[离散搜索]
    H[几何建模应用] --> I[边界表示应用]
    H --> J[实体表示应用]
    H --> K[多边形和多面体应用]
    K --> L[凸多边形应用]
    K --> M[非凸多边形应用]
    K --> N[多面体应用]
    O[运动规划扩展] --> P[避免移动障碍物]
    O --> Q[多机器人协调]
    O --> R[操作规划]
    O --> S[闭运动链规划]

综上所述,运动规划是一个复杂而又充满挑战的领域,涉及到多个方面的知识和技术。通过深入理解运动规划的原理、方法和相关的几何建模技术,以及应对各种扩展问题的挑战,我们可以更好地将运动规划应用于实际场景中,为机器人、自动化生产等领域的发展提供有力支持。在未来,随着科技的不断进步,运动规划有望在更多领域取得突破,解决更加复杂的问题。

(Kriging_NSGA2)克里金模型结合多目标遗传算法求最优因变量及对应的最佳自变量组合研究(Matlab代码实现)内容概要:本文介绍了克里金模型(Kriging)多目标遗传算法NSGA-II相结合的方法,用于求解最优因变量及其对应的最佳自变量组合,并提供了完整的Matlab代码实现。该方法首先利用克里金模型构建高精度的代理模型,逼近复杂的非线性系统响应,减少计算成本;随后结合NSGA-II算法进行多目标优化,搜索帕累托前沿解集,从而获得多个最优折衷方案。文中详细阐述了代理模型构建、算法集成流程及参数设置,适用于工程设计、参数反演等复杂优化问题。此外,文档还展示了该方法在SCI一区论文中的复现应用,体现了其科学性实用性。; 适合人群:具备一定Matlab编程基础,熟悉优化算法和数值建模的研究生、科研人员及工程技术人员,尤其适合从事仿真优化、实验设计、代理模型研究的相关领域工作者。; 使用场景及目标:①解决高计算成本的多目标优化问题,通过代理模型降低仿真次数;②在无法解析求导或函数高度非线性的情况下寻找最优变量组合;③复现SCI高水平论文中的优化方法,提升科研可信度效率;④应用于工程设计、能源系统调度、智能制造等需参数优化的实际场景。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现过程,重点关注克里金模型的构建步骤NSGA-II的集成方式,建议自行调整测试函数或实际案例验证算法性能,并配合YALMIP等工具包扩展优化求解能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值