有趣的数学 完美钻石切工的数学

本文讲述了钻石切割从古代到现代的发展历程,特别是MarcelTolkowsky对理想切工的贡献,以及数学在提高切割效率和宝石光学效果中的应用,展示了技术如何提升钻石切割的美学与经济效益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

钻石切割的历史

        毛坯钻石通常看起来像旧玻璃片,只有经过切割和抛光后,它们才开始呈现出美丽的外观。即使是迄今为止发现的最大的钻石原石(被称为库里南钻石),在被切割成单颗钻石(其中一些被用于制作皇冠上的宝石)之前,它看起来也不起眼。

        自中世纪以来,人们就开始切割钻石,随着时间的推移,形状不断演变,生产出越来越有吸引力的钻石。到 1900 年,古老的欧洲切工已成为最流行的设计之一,它类似于我们所认为的现代钻石。

        大约在这个时候,钻石切割工具不断改进,钻石切割师可以使用新的珠宝锯和车床。这意味着现在可以研究是否存在理论上完美的钻石切工,因为工具精度不够不再是主要限制。

1900 年之前金刚石切割的演变

寻找完美的切工

        接受挑战寻找完美切割钻石的年轻人叫做Marcel Tolkowsky。他非常适合研究钻石切割,因为他的家庭是一个世代切割钻石的工匠世家,而且还在伦敦大学工程学院攻读博士学位。Tolkowsky的博士论文专注于钻石的研磨和抛光,这意味着他能够利用自己的数学和科学知识,并将其应用于寻找钻石最佳切割方法的问题。

亮度与火彩

        人们在钻石上寻找的主要品质有两个。第一个是亮度——这是衡量观看钻石的人反射回多少光的指标。如果光线进入钻石,然后直接离开钻石背面,那么它就会显得沉闷而无生气。另一种性质被称为火彩——这是白光分散成彩虹色的组成部分。亮度和火彩的结合产生了我们都知道和喜爱的闪闪发光的效果。

折射

        Marcel Tolkowsky观察了光线进入不同切割钻石时的行为。当光线从空气进入钻石等材料时,它会改变方向,这一过程被称为折射。

        材料的折射率可以计算如下:

        折射率 = 空气或真空中的光速 / 材料中的光速

        与折射率为1.52的普通玻璃相比,金刚石具有2.42的极高折射率。钻石是所有天然材料中折射率最高的材料之一,这也是它如此特殊的原因之一。

        当你增加光线的角度时,它最终会达到所谓的临界角。这意味着光将停止折射,而是被反射。钻石的临界角约为24度,而玻璃的临界角则约为41度。

光线从玻璃传播到空气时的临界角示意图

        托尔科夫斯基利用这些知识来检测,他想设计一种钻石,使光线以大于临界角的角度进入并照射背面,最初产生内部反射。然后,他希望光线以小于临界角的角度照射到钻石的顶面,从而折射出钻石的顶部,到达观看钻石的人的眼睛。托尔科夫斯基发现,大多数钻石切割得要么太深,要么太浅。

箭头表示光线穿过钻石的路径,中间的图示为理想的切割

        他利用几何学得出了所谓的理想钻石切割。这是为了优化亮度和火焰,许多现代钻石都是基于托尔科夫斯基的原始设计。类似的理论可以用于优化其他宝石的切割,使用它们各自的临界角。

用数学切割钻石

        钻石切割机还面临着充分利用原石和避免浪费的问题。经验丰富的钻石切割工预计只需使用三分之一的原石就可以生产出成品钻石,考虑到钻石的昂贵程度,这是一种巨大的浪费。

        Fraunhofer研究所的数学家一直在研究如何提高经验丰富的刀具的判断能力。他们使用了一种被称为“半无限优化”的数学技术,他们的算法使产量增加了约10%。这听起来可能没有那么多,但考虑到钻石的成本,这是一个显著的改进。

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值