基于深度学习多层感知机进行手机价格预测

数据集介绍

数据集采用了Kaggle实战数据集,链接如下,如有需要可自行下载

https://www.kaggle.com/datasets/atefehmirnaseri/cell-phone-price/data

数据集简要介绍

battery_power:电池的总能量存储(毫安时)

blue:设备是否有蓝牙功能,1 表示有,0 表示没有

clock_speed:微处理器执行指令的速度

dual_sim:设备是否支持同时使用两张 SIM 卡

fc:前置摄像头的质量(以百万像素为单位)

four_g:设备是否支持 4G 网络

int_memory:设备的内部存储容量(以 GB 为单位)

m_dep:设备的厚度(以厘米为单位)

mobile_wt:设备的重量

n_cores:处理器的核心数量

pc:主摄像头的质量(以百万像素为单位)

px_height:像素分辨率的高度

px_width:像素分辨率的宽度

ram:随机存取存储器的容量(以 MB 为单位)

sc_h:设备屏幕的高度(以厘米为单位)

sc_w:设备屏幕的宽度(以厘米为单位)

talk_time:设备满电时支持的最长通话时间

three_g:设备是否支持 3G 网络

touch_screen:设备是否有触摸屏

wifi:设备是否有 WiFi 功能

price_range:设备的价格分类

其中要预测的标签值为price_range,价格范围为四分类,标签值为0,1,2,3

代码开源地址

由于Kaggle数据集并未提供测试集数据的标签值,所以本篇博客为基于其训练集数据集进行划分训练测试训练的样例讲解.

Kaggle代码地址

Phone Price Prediction MLP | Kaggle

这是我于该数据集下发布的notebook链接,里面使用本篇博客要介绍的四种测试模型中的多层感知机+层归一化+Dropout正则+leaky relu激活的模型版本,但是其在训练集上的表现并不是最好的,其中有包括数据集信息提取和特征关系矩阵的提取和可视化.

Github开源地址

https://github.com/Foxbabe1q/Cell-Phone-Price-Prediction-using-MLP

这是我样例代码的Github仓库链接,其中包含了完整的4个模型的代码,模型二进制文件,以及损失和准确率变化图,但是由于官方并没有提供测试集标签,所以这里使用训练集进行划分后训练测试,具体的四个模型的建模方式在本篇博客进行讲解

Gitee码云开源地址

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值