手机参数分析和以及对手机价格预测

该博客探讨了手机价格与其参数之间的关系,使用Python、sklearn和机器学习方法(多层感知机、决策树、逻辑回归)进行预测。通过数据预处理、可视化分析和模型构建,发现电池容量、像素分辨率和RAM与价格高度相关。结果显示,决策树模型在预测准确率上表现最佳,而数据归一化处理能提高逻辑回归和多层感知机的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集下载地址: https://www.kaggle.com/vikramb/mobile-price-eda-prediction

1. 提出问题

        手机存在许多参数,包括电池容量,是否有蓝牙,微处理器执行命令的速度等等。本次实验意在探讨手机的价格与这些参数的关系,并尝试根据这些手机参数,预测手机的价格范围,并展示出预测的准确度。

 2. 准备工作

        导入需要用到的库,包括pandas,matplotlib以及机器学习的sklearn等等。

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns


from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn import model_selection
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.neural_network import MLPClassifier

3. 数据预处理

        导入输入数据集,包括训练集和测试集。

df_train = pd.read_csv('C:/Users/28555/Desktop/train.csv')
df_test = pd.read_csv('C:/Users/28555/Desktop/test.csv')//文件存在电脑的位置

        然后进行数据清洗,将训练集中的价格范围(price_range)这一列分离出去,方便之后的机器学习;同时将测试集中的ID一列剥离。

X = df_train.drop(['price_range'],axis = 1)
y = df_train['price_range']
test = df_test.drop(['id'],axis = 1)

4. 可视化分析

        由于与手机价格相关的参数较多,一个一个图地输出非常麻烦,因此可直接用热力图,分析

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值