sklearn preprocessing 数据预处理(OneHotEncoder)

17 篇文章 0 订阅

1. one hot encoder

sklearn.preprocessing.OneHotEncoder

one hot encoder 不仅对 label 可以进行编码,还可对 categorical feature 进行编码:

>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()

>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])  

>>> enc.n_values_
array([2, 3, 4])

>>> enc.feature_indices_
array([0, 2, 5, 9])

>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.]])
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

为 OneHotEncoder 类传递进来的数据集:

[[0, 0, 3], 
[1, 1, 0], 
[0, 2, 1], 
[1, 0, 2]]
 
 
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

每一列代表一个属性,fit 操作之后:

  • 对象encn_values_成员变量,记录着每一个属性的最大取值数目,如本例第一个属性:0, 1, 0, 1 ⇒ 2,0, 1, 2, 0 ⇒ 3,3, 0, 1, 2 ⇒ 4; 
    • 即各个属性(feature)在 one hot 编码下占据的位数;
  • 对象 enc 的 feature_indices_,则记录着属性在新 One hot 编码下的索引位置, 
    • feature_indices_ 是对 n_values_ 的累积值,不过 feature_indices 的首位是 0;

进一步通过 fit 好的 one hot encoder 对新来的特征向量进行编码:

>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.]])
 
 
  • 1
  • 2
  • 1
  • 2
  • 前 2 位 1, 0,对 0 进行编码
  • 中间 3 位 0, 1, 0 对 1 进行编码;
  • 末尾 4 位 0, 1, 0, 0 对 1 进行编码;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值