sklearn 中的 Pipeline 机制

from sklearn.pipeline import Pipeline
   
   
  • 1
  • 1

管道机制在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用

管道机制实现了对全部步骤的流式化封装和管理(streaming workflows with pipelines)。

注意:管道机制更像是编程技巧的创新,而非算法的创新。

接下来我们以一个具体的例子来演示sklearn库中强大的Pipeline用法:

1. 加载数据集

from pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelEncoder

df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/'
                 'breast-cancer-wisconsin/wdbc.data', header=None)
                                 # Breast Cancer Wisconsin dataset

X, y = df.values[:, 2:], df.values[:, 1]
                                # y为字符型标签
                                # 使用LabelEncoder类将其转换为0开始的数值型
encoder = LabelEncoder()
y = encoder.fit_transform(y)
                    >>> encoder.transform(['M', 'B'])
                    array([1, 0])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=0)

   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

2. 构思算法的流程

可放在Pipeline中的步骤可能有:

  • 特征标准化是需要的,可作为第一个环节
  • 既然是分类器,classifier也是少不了的,自然是最后一个环节
  • 中间可加上比如数据降维(PCA)
  • 。。。
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression

from sklearn.pipeline import Pipeline

pipe_lr = Pipeline([('sc', StandardScaler()),
                    ('pca', PCA(n_components=2)),
                    ('clf', LogisticRegression(random_state=1))
                    ])
pipe_lr.fit(X_train, y_train)
print('Test accuracy: %.3f' % pipe_lr.score(X_test, y_test))

                # Test accuracy: 0.947
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

Pipeline对象接受二元tuple构成的list,每一个二元 tuple 中的第一个元素为 arbitrary identifier string,我们用以获取(access)Pipeline object 中的 individual elements,二元 tuple 中的第二个元素是 scikit-learn与之相适配的transformer 或者 estimator。

Pipeline([('sc', StandardScaler()), ('pca', PCA(n_components=2)), ('clf', LogisticRegression(random_state=1))])
   
   
  • 1
  • 1

3. Pipeline执行流程的分析

Pipeline 的中间过程由scikit-learn相适配的转换器(transformer)构成,最后一步是一个estimator。比如上述的代码,StandardScalerPCA transformer 构成intermediate steps,LogisticRegression 作为最终的estimator

当我们执行 pipe_lr.fit(X_train, y_train)时,首先由StandardScaler在训练集上执行 fittransform方法,transformed后的数据又被传递给Pipeline对象的下一步,也即PCA()。和StandardScaler一样,PCA也是执行fit和transform方法,最终将转换后的数据传递给 LosigsticRegression。整个流程如下图所示:


 

4. pipeline 与深度神经网络的multi-layers

只不过步骤(step)的概念换成了层(layer)的概念,甚至the last step 和 输出层的含义都是一样的。

只是抛出一个问题,是不是有那么一丢丢的相似性?

`sklearn.pipeline`是Scikit-learn库的一个模块,用于构建和管理机器学习流水线(pipeline)。机器学习流水线是一种将多个数据处理步骤和机器学习模型串联起来的方式,以便更方便地进行模型训练和预测。 在`sklearn.pipeline`,可以通过`Pipeline`类来定义一个流水线对象。流水线对象由多个步骤组成,每个步骤可以是数据处理操作(如特征预处理、特征选择等)或机器学习模型。每个步骤都可以指定一些参数,以便自定义其行为。 使用流水线可以将不同的数据处理和建模步骤封装在一起,从而实现更高效、更简洁的机器学习工作流程。流水线可以确保在训练和预测时所有步骤按顺序执行,并且可以方便地进行参数调优和交叉验证。 下面是一个简单的示例,展示如何使用`sklearn.pipeline`构建一个简单的流水线: ```python from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression # 定义流水线的步骤 steps = [ ('scaler', StandardScaler()), # 特征预处理 ('classifier', LogisticRegression()) # 分类器 ] # 创建流水线对象 pipeline = Pipeline(steps) # 使用流水线进行训练和预测 pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) ``` 在上述示例,流水线包含两个步骤:特征预处理(使用`StandardScaler`进行特征缩放)和分类器(使用`LogisticRegression`进行分类)。可以根据实际需求自定义流水线的步骤和参数,并使用流水线进行模型训练和预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值