1138 连续整数的和
基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题
给出一个正整数N,将N写为若干个连续数字和的形式(长度 >= 2)。例如N = 15,可以写为1 + 2 + 3 + 4 + 5,也可以写为4 + 5 + 6,或7 + 8。如果不能写为若干个连续整数的和,则输出No Solution。
Input
输入1个数N(3 <= N <= 10^9)。
Output
输出连续整数中的第1个数,如果有多个按照递增序排列,如果不能分解为若干个连续整数的和,则输出No Solution。
Input示例
15
Output示例
1
4
7
思路:51nod关于数学的题很多啊。连续的整数之和,就是d=1的等差数列。利用等差数列的前n项和公式,可以推出a1=(2*Sn+n-n*n)/(2*n);其中项数n我们从2*sqrt(Sn)开始向下遍历,直到n=2结束。
#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
int main()
{
int n;
scanf("%d",&n);
int flag=1;
for(int i=2*sqrt(n);i>=2;i--) {
if((2*n+i-i*i)%(2*i)==0&&(2*n+i-i*i)>0) {
printf("%d\n",(2*n+i-i*i)/(2*i));
flag=0;
}
}
if(flag==1) printf("No Solution\n");
return 0;
}