实战案例:利用低代码技术快速构建房屋租赁数字化管理平台

在数字化浪潮中,传统房屋租赁企业需要通过低代码进行数字化转型,用于市场竞争加剧和客户需求升级的压力。百数能够帮助企业快速开发应用,满足企业快速响应市场变化的需求。同时,数字化转型能够提高企业运营效率,降低成本,提升服务品质和客户体验。通过数据分析和智能决策,企业能够更好地理解市场需求,制定科学合理的策略。

国内XXXX网络科技有限公司:

这是一家秉承着探索新型住宿方式、打造新型住宿品牌的战略理念,为新世代年轻消费客群提供优质的新型住宿产品。其品牌文化主张在关注当下的同时,用向新而生的品牌主张打造新公寓,重新定义人与住宿的关系,让未来即现在。

亮点标签:房屋租赁、房源信息实时更新、服务质量直线上升

痛点详情
信息不对称企业微通常依赖纸质文档和人工管理,信息传递和更新不及时,导致房东、租客和管理人员之间信息不一致,容易产生纠纷。
效率低下由于缺乏自动化和智能化的管理工具,新寓在处理租务、维修、收费等日常事务时效率较低,影响客户体验。
服务品质难以保障由于缺乏统一的管理标准和流程,不同地区或员工的服务水平可能存在差异,难以保证服务的品质和稳定性。
决策依据不足企业缺乏数据支持和分析,导致决策多依赖经验和直觉,不够科学和准确。
沟通不畅企业内部各部门之间以及与外部合作伙伴之间的沟通不畅,影响协同工作和快速响应。

解决方案

使用版本百数私有云
运行模式私有云集群模式
版本简介不限制使用人数,高级计算功能完全开放,适合初具规模企业常规访问频率使用场景。
使用人数100~500人
性能支持在保证系统正常运转以及运算速度的同时,做到全业务上云,通过一个平台做到全员管理。
达成效果企业通过百数低代码进行数字化转型,实现了业务流程的自动化和智能化,提高了工作效率和客户满意度。

注意:以下示例图皆为百数应用中心应用图,非客户实际使用图,仅用作功能解析。

1.效率显著提升:

在企业应用百数房屋管理应用后,工作效率得到大幅提升。业务流程自动化处理,使整体效率提高至原先的两倍以上,显著降低了运营成本。

2.信息准确无误:

通过百数平台的数字化解决方案,实现了业务数据的系统化管理。这不仅减少了信息出错的情况,还大大降低了因信息不对称导致的管理问题。

3.智能决策支持:

百数的报表和数据分析工具为企业提供了实时、准确的数据支持。这使得管理层能够根据数据进行科学决策,提高了决策效率和准确性。

4.服务品质卓越:

百数帮助企业建立了标准化的服务流程,确保了服务品质的可靠性和稳定性。这不仅提高了租客满意度,还进一步巩固了新寓的市场地位。

5.高效内部沟通:

百数的集成能力优化了企业内部的沟通机制。各部门之间的信息流通更加顺畅,协同工作效率大大提高,有效促进了企业的整体运营效率。

最终总结:

转型后,企业在服务品质、内部沟通、品牌形象等方面也取得了显著提升,为企业的可持续发展奠定了基础。数字化转型是企业适应市场环境、提高竞争力的关键步骤。

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
TensorFlow是一个开源的深度学习框架,拥有丰富的API和工具,可以用于各种应用场景,包括股票数据预测。在这个案例中,我们将使用LSTM(长短期记忆)和GRU(门控循环单元)这两种常用的循环神经网络模型,对股票数据进行预测。以下是Python的完整代码示例: ```python import tensorflow as tf import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler # 读取数据 data = pd.read_csv('stock_data.csv') close_prices = data['close'].values.reshape(-1, 1) # 数据预处理 scaler = MinMaxScaler() scaled_close_prices = scaler.fit_transform(close_prices) # 划分训练集和测试集 train_size = int(len(scaled_close_prices) * 0.8) train_data = scaled_close_prices[:train_size] test_data = scaled_close_prices[train_size:] # 构建训练集和测试集 def create_dataset(data): X, y = [], [] for i in range(len(data) - 60): X.append(data[i:i+60]) y.append(data[i+60]) return np.array(X), np.array(y) X_train, y_train = create_dataset(train_data) X_test, y_test = create_dataset(test_data) # 构建LSTM模型 model_lstm = tf.keras.Sequential([ tf.keras.layers.LSTM(50, return_sequences=True, input_shape=(60, 1)), tf.keras.layers.LSTM(50), tf.keras.layers.Dense(1) ]) model_lstm.compile(optimizer='adam', loss='mean_squared_error') model_lstm.fit(X_train, y_train, epochs=10, batch_size=32) # 构建GRU模型 model_gru = tf.keras.Sequential([ tf.keras.layers.GRU(50, return_sequences=True, input_shape=(60, 1)), tf.keras.layers.GRU(50), tf.keras.layers.Dense(1) ]) model_gru.compile(optimizer='adam', loss='mean_squared_error') model_gru.fit(X_train, y_train, epochs=10, batch_size=32) # 模型预测 predictions_lstm = model_lstm.predict(X_test) predictions_gru = model_gru.predict(X_test) # 反归一化 scaled_predictions_lstm = scaler.inverse_transform(predictions_lstm) scaled_predictions_gru = scaler.inverse_transform(predictions_gru) scaled_y_test = scaler.inverse_transform(y_test) # 评估模型 def evaluate_model(predictions, y): rmse = np.sqrt(np.mean((predictions - y) ** 2)) return rmse rmse_lstm = evaluate_model(scaled_predictions_lstm, scaled_y_test) rmse_gru = evaluate_model(scaled_predictions_gru, scaled_y_test) print('LSTM模型的RMSE:', rmse_lstm) print('GRU模型的RMSE:', rmse_gru) ``` 在这个案例中,我们首先读取了股票数据,并进行了数据预处理,包括数据归一化和训练集和测试集的划分。然后,我们使用LSTM和GRU分别构建了模型,并训练了模型。接下来,我们使用模型对测试集进行预测,并对预测结果进行反归一化。最后,我们评估了模型的性能,使用均方根误差(RMSE)作为评估指标。输出结果中,LSTM模型的RMSE和GRU模型的RMSE可以帮助我们了解模型预测的准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值