矩阵的基本概念
线性代数--矩阵基本计算(加减乘法)_矩阵运算-CSDN博客
矩阵*逆矩阵 =E(单位矩阵)
矩阵案例
一个m×n的矩阵a(m,n)左乘一个n×p的矩阵b(n,p),会得到一个m×p的矩阵c(m,p)。左乘:又称前乘,就是乘在左边(即乘号前),比如说,A左乘E即AE。
其核心是第一个矩阵第一行的每个数字,各自乘以第二个矩阵第一列对应位置的数字,然后乘积相加就可以得到,换句话说,结果矩阵的第M行与第N列交叉的位置的那个值等于第一个矩阵的第M行与第二个矩阵第N列对应位置的每个数字的乘积之和。
方程组表示
给两个方程组:x1 = y1 -y2 y1 = z1 + z2 + z3
x2 = y1 + y2 y2 = z1 -2z2 + z3
要求x1 和 x2 用z1 z2 z3表示
计算方式: X1,X2用(y1,y2)表示(矩阵A), Y1,y2用(z,z2,z3)表示(矩阵B)
只有当矩阵B的列数与矩阵A的行数相等时A×B才有意义。A*B的意义将X1,X2使用矩阵B里的变量来表示。(几何意义就是空间变换空间变换,在A坐标向量在B坐标系中表示。 在一个坐标系中AXB表示A向量与B向量组成平面的法向量,法向量就是垂直平面)
X1使用(1,-1)表 前个1为y1(1z1,1z2,2z3),后-1个为y2(1z1,-2z2,1z3).
X1表示z1为(消除y1,y2):1y1*1z1+ (-1y2)*1z1=0z1,同里 3z2,1z3 .X1=(0,3,1)
X2=(2,-1,3)
方程解
1.二阶行列式解方程 二阶行列式解方程
2.多元一次方程写成矩阵方程AX=b的形式,然后,方程两边用A的逆矩阵左乘,得到解:X=A^(-1)*b. 以上方法中,求逆矩阵是重点。A^(-1)表示A的逆矩阵。
逆矩阵解法
待定系数法
参考: 求逆矩阵的三种方法
对于这个题来说,左边是题目中的矩阵,右边是假设的三阶矩阵
[1 -4 -3] | [a b c]
[1 -5 -3] | [d e f]
[-1 6 4] | [g h i]
过程如下
[a-4d-3g b-4e-3h c-4f-3i ] | [1 0 0]
[a-5d-3g b-5e-3h c-5f-3i ] | [0 1 0]
[-a+6d+4g -b+6d+4g -c+6c+4i ] | [0 0 1]
九个未知数九个方程
a-4d-3g=1 a=2
b-4e-3h=0 b=2
c-4f-3i=0 c=3
a-5d-3g=0 >>> d=1
b-5e-3h=1 >>> e=-1
c-5f-3i=0 >>> f=0
-a+6d+4g=0 g=-1
-b+6d+4g=0 h=2
-c+6c+4i=1 i=1
结论: 通过方程组来表示矩阵的意义。----------非常重要,后续矩阵解决实际问题的原理.
可通过矩阵解方程,也能通过方程求“逆矩阵”-------非常重要,用于计算及推演.