卷积神经网络,为什么我的test Accuracy 一直显示为 0?

卷积神经网络,为什么我的test Accuracy 一直显示为 0?
原因是:accuracy格式应如下所示:

accuracy=sum(pred_y==test_y)/float(test_y.size(0))

打印命令可为:

print('Epoch:',epoch,'|train loss:%.4f'% loss.item(),'|test accuracy:%.4f' % accuracy)

最终即可正常输出结果,如下所示:
在这里插入图片描述

首先,你需要使用NumPy库来加载.npy格式的图像数据,然后将其转换为适合Keras卷积神经网络的格式。通常,Keras期望输入数据的格式为四维张量,即(样本数量,图像高度,图像宽度,通道数)。 以下是一个示例代码,展示了如何加载.npy格式的图像数据并准备用于Keras卷积神经网络的格式: ``` python import numpy as np from keras.utils import to_categorical # 加载.npy格式的图像数据 X_train = np.load('train_images.npy') y_train = np.load('train_labels.npy') X_test = np.load('test_images.npy') y_test = np.load('test_labels.npy') # 将标签进行one-hot编码 y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) # 转换图像数据为Keras期望的格式 X_train = X_train.reshape(X_train.shape[0], 28, 28, 1) X_test = X_test.reshape(X_test.shape[0], 28, 28, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 ``` 在这个示例中,我们假设我们的.npy文件包含MNIST手写数字数据集的图像和标签。我们使用NumPy的`load()`函数来加载.npy文件,并将它们分别保存到X_train、y_train、X_test和y_test变量中。然后,我们使用Keras的`to_categorical()`函数将标签进行one-hot编码,以便它们可以用于训练分类器。最后,我们将图像数据转换为适合Keras卷积神经网络的四维张量格式,并将像素值归一化到0到1之间。 现在,我们已经准备好将这些数据用于训练Keras卷积神经网络。你可以根据你的具体任务和数据集来选择适当的模型结构和超参数。以下是一个示例代码,显示如何定义和训练一个简单的卷积神经网络来对MNIST数据集进行分类: ``` python from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D # 定义模型 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) # 编译模型 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 model.fit(X_train, y_train, batch_size=128, epochs=10, validation_data=(X_test, y_test)) ``` 在这个示例中,我们定义了一个简单的卷积神经网络,它包含一个卷积层、一个最大池化层、一个dropout层、一个全连接层和一个输出层。我们使用`compile()`函数来编译模型,并指定损失函数、优化器和评估指标。最后,我们使用`fit()`函数来训练模型并在测试数据上进行验证。 当训练完成后,你可以使用`evaluate()`函数来评估模型在测试数据上的性能,或使用`predict()`函数来对新数据进行分类。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值