洛谷P4159 [SCOI2009]迷路

刷矩乘的时候碰到这个题,但是图论题做得很少,所以就做自闭了qwq
既然这样那必须要写一篇题解啊qwq

题目链接
参考题解


f t , i , j \large f_{t,i,j} ft,i,j 表示时间为 t t t 、起点为 i i i 时,刚好走到 j j j 点的路径数。
不难发现时间 t = 1 t=1 t=1 时, f 1 f_1 f1 这个矩阵就是读入数据中的矩阵,且答案就是 f T , 0 , n − 1 \large f_{T,0,n-1} fT,0,n1
我原来也想到了这一步,然后就开始大力推式子,不久后发现这道题远没有我想的那么简单(读者可自行尝试),因为最终推出来的式子没办法用矩阵乘法优化。

所以我们只能先从简单的情况下手:
如果 边权 ∈ { 0 , 1 } \text{边权} \in \{0,1\} 边权{0,1} ,这就相当于一个无权图,两点间仅有 相连 \text{相连} 相连 不相连 \text{不相连} 不相连 两种情况。
显然可以得到 f t , i , j = ∑ k = 0 N − 1 f t − 1 , i , k × f 1 , k , j ( t > 1 ) \large f_{t,i,j}=\sum\limits_{k=0}^{N-1}f_{t-1,i,k} \times f_{1,k,j}\quad (t>1) ft,i,j=k=0N1ft1,i,k×f1,k,j(t>1)
这个式子和矩阵乘法的式子高度雷同,很容易看出 f t = f t − 1 × f 1 \large f_t=f_{t-1}\times f_1 ft=ft1×f1
也就是 f t = f 1 t f_t={f_1}^t ft=f1t 。然后直接矩阵快速幂就行了。

再回到原题的情况: 边权 ∈ [   0 , 9   ]   ∩   Z \text{边权} \in [\ 0,9\ ]\ \cap\ \Z 边权[ 0,9 ]  Z
简单情况不是拿来骗分的,而是用来转化的。为了把边权转化为 0或1 \text{0或1} 01 ,我们需要拆点
为了在拆点后的新图中还原原图,并且只用边权为 0或1 的边,我们需要将每个点都拆成 9 个点。这里我们用有序数对 ( i , j ) (i,j) (i,j) 表示原来的 i i i 点所拆出的第 j j j 个点。其中 i ∈ [ 0 , n − 1 )   ∩   Z   ,   j ∈ [ 0 , 9 )   ∩   Z i \in [0,n-1)\ \cap\ \Z \ ,\ j \in[0,9)\ \cap \ \Z i[0,n1)  Z , j[0,9)  Z 。钦定 ( i , 0 ) (i,0) (i,0) 为原来的 i i i 点。

我们需要这样连边: ( i , 0 ) ← ( i , 1 ) ← ⋯ ← ( i , 7 ) ← ( i , 8 ) (i,0)\leftarrow(i,1)\leftarrow\cdots\leftarrow(i,7)\leftarrow(i,8) (i,0)(i,1)(i,7)(i,8)
对于原图中 i → j i\rightarrow j ij 权值为 v v v 的边,我们就只需要连上 ( i , 0 ) → ( j , v − 1 ) (i,0)\rightarrow (j,v-1) (i,0)(j,v1) 这条边即可。
( i , j ) (i,j) (i,j) 对应的点编号为 i + j × n i+j\times n i+j×n ,新图就算是完成了。
原矩阵变为 9 n × 9 n 9n\times 9n 9n×9n 的新矩阵,显然它也满足 f t = f 1 t f_t={f_1}^t ft=f1t ,答案为 f T , 0 , n − 1 f_{T,0,n-1} fT,0,n1

时间复杂度: O (   ( 9 n ) 3 log ⁡ T ) = O ( 729 n 3 log ⁡ T ) \mathcal O(\ (9n)^3\log T)=\mathcal O(729n^3\log T) O( (9n)3logT)=O(729n3logT)
奥义 · 大常数
反正能跑过去就行啦~


c o d e \large \rm code code

这是我目前跑得最快的一个版本,总用时 719 m s \rm 719ms 719ms

#pragma GCC optimize("Ofast") //卡常数专用,可忽略
#include<cstdio>
#include<cstring>

const int mod=2009;
int n,M,T;

struct node { int c[90][90]; }f;
void operator *= (node &a,node b) { //矩阵乘法
    node s=a; memset(a.c,0,sizeof(a.c));
    for (int i=0; i<M; ++i)
    for (int j=0; j<M; ++j)
    for (register int k=0; k<M; ++k)
        a.c[i][j]=(a.c[i][j]+s.c[i][k]*b.c[k][j])%mod;
    return ;
}
void operator ^= (node &a,int y) { //矩阵乘法
    node ans=a; memset(a.c,0,sizeof(a.c));
    for (register int i=0; i<M; ++i) a.c[i][i]=1;
    while (y) {
        if (y&1) a*=ans;
        ans*=ans; y>>=1;
    }
    return ;
}

int main() {
    scanf("%d%d",&n,&T); getchar(); //过滤回车
    M=(n<<3)+n; register int s=0; //小优化,加比乘快
    for (int i=0; i<n; ++i,s=i)
        for (int j=0; j<8; ++j,s+=n) f.c[s+n][s]=1;
    for (int i=0; i<n; ++i,getchar()) //getchar过滤回车
        for (int j=0; j<n; ++j) {
            int v=getchar()^48;
            if (v) f.c[i][j+(v-1)*n]=1;
        }
    f^=T;
    printf("%d",f.c[0][n-1]);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值