线性代数笔记20--特征值特征向量与旋转矩阵推导

1. 特征向量与特征值

研究对象是一个平面 A A A,向量 X X X通过 A A A变换后仍然平行于 X X X

这样的向量就叫特征向量。
变换后的向量与原向量的比值就是特征值。

A X / / X A X = λ X AX \mathop{//} X\\ AX= \lambda X AX//XAX=λX

如果矩阵 A A A是奇异矩阵,那么 λ = 0 \lambda=0 λ=0是一个特征值。

1.1 举例子
  • 投影矩阵
    如果 X X X在投影平面上 P X = X , λ = 1 PX=X,\lambda=1 PX=X,λ=1;
    如果 X ⊥ P X\perp P XP,则 P X = 0 = 0 X , λ = 0 PX=0=0X,\lambda=0 PX=0=0X,λ=0
  • 二阶矩阵
    A = [ 0 1 1 0 ] A=\begin{bmatrix} 0 & 1\\1 & 0 \end{bmatrix} A=[0110]
    X 1 = [ 1 1 ]   λ 1 = 1 A X = X X_1=\begin{bmatrix} 1\\1 \end{bmatrix} \ \lambda_1=1\\ AX=X X1=[11] λ1=1AX=X
    X 2 = [ − 1 1 ]   λ 2 = − 1 A X = − X X_2=\begin{bmatrix} -1\\1 \end{bmatrix} \ \lambda_2=-1\\ AX=-X X2=[11] λ2=1AX=X
    矩阵的迹
    t r a c e = ∑ i = 1 n λ i trace=\sum_{i=1}^{n} \lambda_i trace=i=1nλi
    矩阵的迹与对角线元素之和相等
    t r a c e = ∑ i = 1 n a i i = ∑ i = 1 n λ i trace=\sum_{i=1}^{n}a_{ii}=\sum_{i=1}^{n}\lambda_i trace=i=1naii=i=1nλi
1.2 求解 A X = λ X AX=\lambda X AX=λX

A X = λ X ( A − λ I ) X = 0 AX=\lambda X\\ (A-\lambda I)X=0 AX=λX(AλI)X=0
要使 X X X为不为 0 0 0,则矩阵 A − λ I A-\lambda I AλI为奇异矩阵。
所以
d e t   A − λ I = 0 det\ A-\lambda I=0 det AλI=0
就变成了求解 A − λ I A-\lambda I AλI的零空间。

举例子
A = [ 3 1 1 3 ] A − λ I = [ 3 − λ 1 1 3 − λ ] ( 3 − λ ) 2 − 1 = 0 λ 1 = 2 λ 2 = 4 A=\begin{bmatrix} 3 & 1\\1 & 3 \end{bmatrix}\\ A-\lambda I= \begin{bmatrix} 3-\lambda & 1\\1 & 3-\lambda \end{bmatrix}\\ (3-\lambda)^2-1=0\\ \lambda_1=2\\\lambda_2=4 A=[3113]AλI=[3λ113λ](3λ)21=0λ1=2λ2=4
6是迹,8是行列式的值。

A − 4 I = [ − 1 1 1 − 1 ]   X 1 = [ 1 1 ] A − 2 I = [ 1 1 1 1 ]   X 2 = [ 1 − 1 ] A-4I= \begin{bmatrix} -1 & 1\\1 & -1 \end{bmatrix} \ X_1=\begin{bmatrix} 1 \\1 \end{bmatrix}\\ A-2I= \begin{bmatrix} 1 & 1\\1 & 1 \end{bmatrix} \ X_2=\begin{bmatrix} 1 \\-1 \end{bmatrix} A4I=[1111] X1=[11]A2I=[1111] X2=[11]
我们可以看到两个特征向量与我们的上一个例子中特征向量一样,特征值分别加 3 3 3了。

这是因为
A + 3 I = A ′ A X = λ X ( A + 3 I ) X = ( λ + 3 ) X A+3I=A'\\ AX= \lambda X\\ (A+3I)X=(\lambda+3)X A+3I=AAX=λX(A+3I)X=(λ+3)X
但这对两个其他不同矩阵特征值不能应用。
A X = α X B Y = β Y AX=\alpha X\\BY=\beta Y AX=αXBY=βY
因为不能保证他们的特征向量一致。

举例子,旋转矩阵
r o t a = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] rota=\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end{bmatrix} rota=[cosθsinθsinθcosθ]

9 0 ∘ 90^{\circ} 90时旋转矩阵
Q = [ 0 − 1 1 0 ] Q= \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} Q=[0110]

Q ′ = Q − λ I = [ − λ − 1 1 − λ ] d e t   Q ′ = λ 2 + 1 = 0 λ 1 = i λ 2 = − i Q'=Q-\lambda I= \begin{bmatrix} -\lambda & -1\\ 1 & -\lambda \end{bmatrix}\\ det\ Q'= \lambda^2+1=0\\ \lambda_1= i\\\lambda_2=-i Q=QλI=[λ11λ]det Q=λ2+1=0λ1=iλ2=i
矩阵越对称,越有实数特征值。否则就是复数特征值。

再一个例子
A = [ 3 1 0 3 ] A ′ = A − λ I = [ 3 − λ 1 0 3 − λ ] d e t   A ′ = [ 3 − λ 1 0 3 − λ ] = ( λ − 3 ) 2 = 0 λ 1 = λ 2 = 1 X 1 = [ 1 0 ] A=\begin{bmatrix} 3 & 1\\0 & 3 \end{bmatrix}\\ A'=A-\lambda I= \begin{bmatrix} 3-\lambda & 1 \\ 0 & 3-\lambda \end{bmatrix}\\ det\ A'= \begin{bmatrix} 3-\lambda & 1\\ 0 & 3-\lambda \end{bmatrix}= (\lambda-3)^2=0\\ \lambda_1=\lambda_2=1\\ X_1=\begin{bmatrix} 1 \\ 0 \end{bmatrix} A=[3013]A=AλI=[3λ013λ]det A=[3λ013λ]=(λ3)2=0λ1=λ2=1X1=[10]
重根造成了特征向量的缺失

2. 旋转矩阵的推导

假设在二维平面上向量 O A → = ( x , y ) \overrightarrow{OA}=(x,y) OA =(x,y),求逆时针旋转 θ \theta θ后的坐标。

假设 O A → \overrightarrow{OA} OA 的平面角为 α \alpha α,则

x 2 + y 2 = r 2 x^{2}+y^{2}=r^2 x2+y2=r2
r cos ⁡ α = x , r sin ⁡ α = y r\cos\alpha=x,r\sin\alpha=y rcosα=x,rsinα=y

假设旋转后的角度为 β \beta β,则

α + θ = β cos ⁡ β = c o s ( α + θ ) = cos ⁡ θ cos ⁡ α − sin ⁡ θ sin ⁡ α sin ⁡ β = sin ⁡ ( α + θ ) = sin ⁡ θ cos ⁡ α + cos ⁡ θ sin ⁡ α \alpha + \theta= \beta\\ \cos \beta= cos(\alpha+\theta)=\cos \theta \cos \alpha-\sin \theta \sin \alpha\\ \sin \beta=\sin(\alpha+\theta)=\sin \theta \cos \alpha+\cos \theta \sin \alpha α+θ=βcosβ=cos(α+θ)=cosθcosαsinθsinαsinβ=sin(α+θ)=sinθcosα+cosθsinα
换成矩阵的形式
[ cos ⁡ β sin ⁡ β ] = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] [ cos ⁡ α sin ⁡ α ] \begin{bmatrix} \cos \beta\\ \sin \beta\\ \end{bmatrix}= \begin{bmatrix} \cos \theta &-\sin \theta\\ \sin \theta & \cos \theta\\ \end{bmatrix} \begin{bmatrix} \cos \alpha\\ \sin \alpha\\ \end{bmatrix} [cosβsinβ]=[cosθsinθsinθcosθ][cosαsinα]
等式两边同乘向量的模长得到旋转后的坐标
[ cos ⁡ β sin ⁡ β ] [ r ] = [ r cos ⁡ β r sin ⁡ β ] = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] [ cos ⁡ α sin ⁡ α ] [ r ] = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] [ r cos ⁡ α r sin ⁡ α ] \begin{bmatrix} \cos \beta\\ \sin \beta\\ \end{bmatrix} \begin{bmatrix} r \end{bmatrix}=\begin{bmatrix} r\cos \beta\\ r\sin \beta\\ \end{bmatrix}= \begin{bmatrix} \cos \theta &-\sin \theta\\ \sin \theta & \cos \theta\\ \end{bmatrix} \begin{bmatrix} \cos \alpha\\ \sin \alpha\\ \end{bmatrix} \begin{bmatrix} r \end{bmatrix}\\= \begin{bmatrix} \cos \theta &-\sin \theta\\ \sin \theta & \cos \theta\\ \end{bmatrix} \begin{bmatrix} r\cos \alpha\\ r\sin \alpha\\ \end{bmatrix} [cosβsinβ][r]=[rcosβrsinβ]=[cosθsinθsinθcosθ][cosαsinα][r]=[cosθsinθsinθcosθ][rcosαrsinα]
整理后得到旋转后坐标与旋转前坐标关系
[ x ′ y ′ ] = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] [ x y ] \begin{bmatrix} x'\\y' \end{bmatrix}= \begin{bmatrix} \cos \theta &-\sin \theta\\ \sin \theta & \cos \theta\\ \end{bmatrix} \begin{bmatrix} x\\ y\\ \end{bmatrix} [xy]=[cosθsinθsinθcosθ][xy]
所以旋转矩阵为
t r a n s ( θ ) = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] trans(\theta)=\begin{bmatrix} \cos \theta &-\sin \theta\\ \sin \theta & \cos \theta\\ \end{bmatrix} trans(θ)=[cosθsinθsinθcosθ]

  • 18
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值