线性代数笔记23--马尔可夫矩阵、傅里叶级数

本文介绍了马尔可夫矩阵的基本性质,如特征值为1的特殊性,以及在人口迁移模型中的应用。还探讨了傅里叶级数中标准正交基的投影和自然常数e的定义,强调了e作为指数函数底数的自然属性。
摘要由CSDN通过智能技术生成

1. 马尔可夫矩阵

例子
A = [ . 1 . 001 . 3 . 2 . 099 . 3 . 7 0 . 4 ] A= \begin{bmatrix} .1 & .001 & .3\\ .2 & .099 & .3\\ .7 & 0 & .4 \end{bmatrix} A= .1.2.7.001.0990.3.3.4

马尔可夫矩阵满足条件

  • λ = 1 为特征值 \lambda=1为特征值 λ=1为特征值
  • 其他特征值 ∀ ∣ λ i ∣ < 1 \forall |\lambda_i| \lt1 ∀∣λi<1
  • ∀ a i j ≥ 0 , ∀ ∑ i = 0 n a i k = 1 \forall a_{ij} \ge 0, \forall \sum_{i=0}^{n}a_{ik}=1 aij0,i=0naik=1

为什么 λ = 1 \lambda=1 λ=1一定为其特征值

A − I = [ − . 9 . 001 . 3 . 2 − . 001 . 3 . 7 0 − . 6 ] A-I= \begin{bmatrix} -.9 & .001 & .3\\ .2 & -.001 & .3\\ .7 & 0 & -.6 \end{bmatrix} AI= .9.2.7.001.0010.3.3.6
把所有非第一行加到第一行,可以把第一行变为全 0 0 0

所以矩阵 A − I A-I AI为奇异矩阵。

也就是向量 ( 1 , 1 , 1 ) ∈ N ( ( A − I ) ⊤ ) (1,1,1) \in N((A-I)^{\top}) (1,1,1)N((AI)),即 λ = 1 \lambda=1 λ=1 A ⊤ A^{\top} A的一个特征值。

引入

A ⊤ 与 A A^{\top}与A AA有相同的特征值,当 A A A为方阵时。

知乎证明

d e t   A = d e t   A ⊤ d e t   A − λ I = d e t ( A − λ I ) ⊤ = d e t   A ⊤ − λ I d e t   A − λ I = d e t   A ⊤ − λ I det\ A=det\ A^{\top}\\ det\ A-\lambda I=det (A-\lambda I)^\top=det\ A^{\top}-\lambda I\\ det\ A-\lambda I=det \ A^{\top}-\lambda I det A=det Adet AλI=det(AλI)=det AλIdet AλI=det AλI
对于 d e t   A − λ I = 0 与 d e t A ⊤ − λ I = 0 det\ A- \lambda I=0与det A^{\top}-\lambda I=0 det AλI=0detAλI=0

可以将他们化为相同的主对角线的形式,即关于 λ \lambda λ n n n阶多项式。

所以他们的特征值相同。

A A A化为 R R R形式的行变化,可以同样对 A ⊤ A^{\top} A施行列变换为 L L L

L = R ⊤ L=R^{\top} L=R

所以 λ = 1 \lambda=1 λ=1是马尔可夫矩阵的一个特征向量。

1.1 应用

预测

u k + 1 = A u k u_{k+1}=Au_k uk+1=Auk

人口迁移

假设某一时间内, c c c州到 d d d州人口迁移组成。

A = [ 0.9 0.2 0.1 0.8 ] A=\begin{bmatrix} 0.9 & 0.2\\ 0.1 & 0.8 \end{bmatrix} A=[0.90.10.20.8]

给定初值 c   d c \ d c d州人口初值,我们则可以预测未来变化。

[ u c u d ] = [ 0 1000 ] \begin{bmatrix} u_{c}\\u_{d} \end{bmatrix}= \begin{bmatrix} 0\\1000 \end{bmatrix} [ucud]=[01000]

λ 1 = 1 , λ 2 = 0.7 \lambda_1=1,\lambda_2=0.7 λ1=1,λ2=0.7

特征向量
X 1 = [ 2 1 ] X 2 = [ 1 − 1 ] X_1=\begin{bmatrix} 2\\1 \end{bmatrix} X_2=\begin{bmatrix} 1\\-1 \end{bmatrix} X1=[21]X2=[11]

稳态方程
u k = c 1 × 1 k [ 2 1 ] + c 2 × ( 0.7 ) k [ − 1 1 ] u_k=c_1\times 1^k\begin{bmatrix}2\\1\end{bmatrix}+c_2\times (0.7)^k\begin{bmatrix}-1\\1\end{bmatrix} uk=c1×1k[21]+c2×(0.7)k[11]
由于
u 0 = [ 0 1000 ] u_0=\begin{bmatrix}0\\1000\end{bmatrix} u0=[01000]
可以求得
c 1 = 1000 / 3 , c 2 = 2000 / 3 c_1=1000/3,c_2=2000/3 c1=1000/3,c2=2000/3
再根据公式即可预测 k k k年后人口状况了。

2. 傅里叶级数

2.1 标准正交基的投影

给定空间 R n R^n Rn上的一组标准正交基

q 1 , q 2 ⋯ q n q_1,q_2 \cdots q_n q1,q2qn

∀ 向量 V 可被表示为 v = ∑ i = 1 n x i q i \forall 向量 V可被表示为\\ v=\sum_{i=1}^{n}x_iq_i 向量V可被表示为v=i=1nxiqi

如何快速求得 x i x_i xi

q i ⊤ v = [ 0   0 ⋯ x i   ⋯ 0 ] q_i^{\top}v=[0\ 0\cdots x_i\ \cdots0] qiv=[0 0xi 0]

矩阵形式
Q X = V X = Q − 1 V = Q ⊤ V x i = q i ⊤ V QX=V\\ X=Q^{-1}V=Q^{\top}V\\ x_i=q_i^{\top}V QX=VX=Q1V=QVxi=qiV

傅里叶级数
f ( x ) = a 0 + a 1 cos ⁡ x + a 2 sin ⁡ x + a 3 cos ⁡ 2 x + ⋯ f ( x ) = f ( x + 2 π ) f(x)=a_0+a_1\cos x+a_2\sin x+a_3\cos2x+\cdots \\ f(x)=f(x+2\pi) f(x)=a0+a1cosx+a2sinx+a3cos2x+f(x)=f(x+2π)

向量点积
v ⊤ w = v 1 w 1 + v 2 w 2 + ⋯ + v n w n v^{\top}w=v_1w_1+v_2w_2+\cdots+v_nw_n vw=v1w1+v2w2++vnwn
函数内积( i n n e r   p r o d u c t inner\ product inner product)

f ⊤ g = ∫ 0 2 π f ( x ) g ( x ) d x f^{\top}g=\int_{0}^{2\pi}f(x)g(x)dx fg=02πf(x)g(x)dx

3. 为什么自然常数 e e e自然

知乎原文

这里的自然指的是,数学逻辑上的自然而不是生活意义上的自然。

是为了让一个数的幂函数求导等于本身方便计算。

y ′ = y y = b x lim ⁡ h → 0 ( b x + h − b x ) h = b x lim ⁡ h → 0 ( b x + h − b x ) = h b x lim ⁡ h → 0 ( b h b x − b x ) = h b x ( b h − 1 ) = h ( b h ) = h + 1 ( b h ) 1 h = ( 1 + h ) 1 h b = lim ⁡ h → 0 ( 1 + h ) 1 h = lim ⁡ n → ∞ ( 1 + 1 n ) n = e y'=y\\ y=b^{x}\\ \lim_{h \to 0} \frac{(b^{x+h}-b^x)}{h}=b^x\\ \lim_{h \to 0} (b^{x+h}-b^x)=hb^{x}\\ \lim_{h \to 0} (b^hb^{x}-b^x)=hb^x\\ (b^h-1)=h\\ (b^h)=h+1\\ (b^{h})^{\frac{1}{h}}=(1+h)^{\frac{1}{h}}\\ b=\lim_{h\to0}(1+h)^{\frac{1}{h}}=\lim_{n\to \infin}(1+\frac{1}{n})^{n}=e y=yy=bxh0limh(bx+hbx)=bxh0lim(bx+hbx)=hbxh0lim(bhbxbx)=hbx(bh1)=h(bh)=h+1(bh)h1=(1+h)h1b=h0lim(1+h)h1=nlim(1+n1)n=e
即为了找到一个幂函数的底数求导等于本身而自然定义的,所以这个数和 π \pi π一样自然。

lim ⁡ h → 0 b x + h − b x h = b x \lim_{h \to 0} \frac{b^{x+h}-b^x}{h} = b^x h0limhbx+hbx=bx

  • 10
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值