【线性代数公开课MIT Linear Algebra】 第二十四课 特征值与特征向量的应用——马尔科夫矩阵、傅里叶级数...

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~

马尔科夫矩阵Markov Matrix

马尔科夫矩阵Markov Matrix有两个性质:所有元素大于等于0,所有矩阵的列相加等于1。

这里性质导致一些有趣的特性:

  • 马尔科夫矩阵Markov Matrix 的幂依然是马尔科夫矩阵Markov Matrix
  • 马尔科夫矩阵Markov Matrix的其中一个特征值为1,其他所有的特征值的绝对值小于1

这二个特性导致了什么呢?看看我们之前关于矩阵的幂的公式:
这里写图片描述
不难发现随着k的增大,特征值的绝对值小于1的项最终都趋近于0,steady state取决于特征值为1的那一项。那么特征向量呢?
一个例子:
这里写图片描述
既然我们说其必定存在特征值为1,那么观察:
这里写图片描述
首先,很容易观察出,对于马尔科夫矩阵A,其减去单位矩阵AI的所有行的和为0,这说明了什么?说明AI的row vector线性相关,AI为奇异矩阵,那么[1,1,1]在AT的null space中,我们想要的特征向量在A的null space中。
这里老师引入一个性质:
A的特征值等于AT的特征值,理由是
det(AλI=0)
det((AλI)T=0)
det(ATλI=0)
求解A的零空间的一个向量很简单,等于求解
这里写图片描述
很容易求解特征向量,第一行取.6,第三行取.7,第二行求解即可。

马尔科夫矩阵的应用

这里写图片描述
举例子:
这里写图片描述
初始状态为[0, 1000]
U是两个城市的人口,矩阵A代表的两个城市之间人口的转化(即从城市cal到mass或反之的人数比例),明显最终的稳态取决于矩阵A,由于这里假设总人口不变,所以矩阵A是马尔科夫矩阵,于是利用上一课的内容求解通式:
这里写图片描述
得到结果后,我们可以轻松获得任意时刻的状态和稳态。

傅里叶级数

由标准正交基组成的投影矩阵

对于任意向量v都可以由标准正交基q1,q2...qn线性表示:
v=x1q1+x2q2+...+xnqn
我们想要得到x1,由于这里q1,q2...qn彼此正交,我们想到做内积inner prodect可以消去其他项:
qT1v=x1qT1q1+x2qT1q2+...+xnqT1qn
qT1v=x1qT1q1+0+...+0
写为如下形式:
这里写图片描述
那么x=Q1v=QTv
xn=qTnv

傅里叶级数

我们知道某个方程:
这里写图片描述
这个方程和上面的很像,这里每一项也是正交,区别在于这里的qn为函数而非向量。
首先是何为函数的正交?正交意味着内积为0,向量的内积我们知道如何额计算:
这里写图片描述
那么两个函数之间呢?函数是一堆连续的点,很自然的想到了积分:
这里写图片描述
对于傅里叶级数,由于存在周期,所以积分从0到2π
于是可以验证傅里叶级数中每一项正交,现在,要怎么求a1,和之前一样,我们让等式两边对cos(x)做内积:
这里写图片描述
(cos(x))2的积分为π于是a1=1π2π0f(x)cos(x)dx

PS:另一位仁兄的笔记
http://blog.csdn.net/suqier1314520/article/details/14056485

转载于:https://www.cnblogs.com/ThreeDayMemory/p/5958695.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值