1. 问题引入
假如有100名囚犯,编号从1到100。
你是这个监狱的监狱长,你给了他们最后一次机会;只要通过一个游戏,他们就能活下去,否则就全都枪毙。
游戏规则如下:
在一个房间里,放置了100个盒子,每个盒子里放
置的是一名囚犯的号码牌,不重不漏。
每轮囚犯轮流进入房间,只能打开其中50个
(一半)盒子;所有囚犯找到自己的号码,他们就
不用被枪毙。
每轮囚犯出来后,所有盒子又会重新关上。
盒子中号码位置不能改变,且在上一个囚犯出房间
后不能与下一个囚犯交流,但是在游戏开始前,所
有囚犯可以在一起讨论采用什么策略。问这些囚犯
可以采取什么样的策略来提高生存率呢?
2. 解决
2.1 随机
如果每名囚犯都随机打开50个盒子,那么对于一名
囚犯没有选到自己号码牌的概率为
P ( A ˉ ) = C 99 50 C 100 50 = 1 2 P(\bar{A}) =\frac{C_{99}^{50}}{C_{100}^{50}} =\frac{1}{2} P(Aˉ)=C10050C9950=21
因此囚犯选到自己号码的概率:
P
(
A
)
=
1
−
P
(
A
ˉ
)
=
1
2
P(A)=1-P(\bar{A})=\frac{1}{2}
P(A)=1−P(Aˉ)=21
100名囚犯都需要选到自己的号码:
P
(
s
u
c
c
e
s
s
)
=
(
1
2
)
100
P(success)=(\frac{1}{2})^{100}
P(success)=(21)100
由此可以看出如果随机的选,这些囚犯几乎必死。
2.2 解决策略
- 每个囚犯选择自己的号码牌开始
- 下一个选择的盒子为这次盒子中的号码对应的盒子
按照这个策略,我们必然可以断定,经过有限次打开
盒子的操作,肯定能找到自己的号码牌。
实际上可以将盒子抽象为顶点,而盒子中的数抽象为边。
证明变为了所有节点出入度均为1的有向图必然各自成环。
放到后面去证明。
一个囚徒能在50次之内找到处自己的号码,说明它号码所在的环中节点数少于50。
由于盒子中纸条的位置并没有改变,所以图也没有改变。
让所有囚徒在50次以内找到自己的号码,就需要让最大的有向环中节点数少于
51。
环最大节点数小于51的可能并不好算,因此我们算大于等于51的。
( k − 1 ) ! (k-1)! (k−1)!为k个数成一个大环的所有可能:第一个数不与自己的位置相同,就有 k − 1 k-1 k−1种可能 ,第二个数位置与自己位置和前一个数占据位置数不同,有 k − 2 k-2 k−2种可能,之后的数都与前面占据的数加自身位置不同。因此总的可能数为 ( k − 1 ) ! (k-1)! (k−1)!
假设此时的最大环节点数为 k k k,可能出现的情况数: C 100 k ( k − 1 ) ! ( 100 − k ) ! C_{100}^k(k-1)!(100-k)! C100k(k−1)!(100−k)!
P
(
k
)
=
C
100
k
(
k
−
1
)
!
(
100
−
k
)
!
100
!
=
1
k
P(k) = \frac{C_{100}^k(k-1)!(100-k)!}{100!} = \frac{1}{k}
P(k)=100!C100k(k−1)!(100−k)!=k1
最大环节点大于50的可能
P
(
f
a
i
l
u
r
e
)
=
∑
k
=
51
100
1
k
P(failure)=\sum_{k=51}^{100} \frac{1}{k}
P(failure)=k=51∑100k1
因此使用该策略能活下去的概率为
P
(
s
u
c
c
e
s
s
)
=
1
−
P
(
f
a
i
l
u
r
e
)
=
0.311828
P(success)=1-P(failure)=0.311828
P(success)=1−P(failure)=0.311828
2.3 证明
所有节点出入度均为1的有向图必然各自成环。
必要性:单个独立有向环中每个节点必然出入度为1
充分性:
首先证明每个节点必然在一个有向环中;
如若不然,取该节点的所有前驱节点,所有后继节点;这两个节点集合必然不相交,因而存在一个前驱节点入度为0,后继出度为0,矛盾。
再证明环独立,若存在节点 a ∈ a\in a∈环 A A A, b ∈ b \in b∈环 B B B,则必然存在一个节点入度>2,矛盾。
3. 编程模拟
3.1 Python
import random;
def getMaxCircle(pNum):
ans = 1
vis = [0]*100
for i in range(100):
if 0 == vis[i]:
cnt = 0
j = i
while(0 == vis[j]):
vis[j] = 1
cnt += 1
j = pNum[j]
ans = max(ans, cnt)
return ans
def HunPrisoners(n):
failure_cnt = 0
for i in range(n):
pNum = list(range(100))
j = 99
while j > 0:
kth = random.randint(0, j)
pNum[kth], pNum[j] = pNum[j],pNum[kth]
j -= 1
if getMaxCircle(pNum) > 50:
failure_cnt += 1
return 1 - (failure_cnt / n)
if __name__ == "__main__":
n = 100
while n < 1e8:
print("repeate %d's possibility: %lf"%(n, HunPrisoners(n)))
n *= 10
结果 :
repeate 1000's possibility: 0.300000
repeate 10000's possibility: 0.313200
repeate 100000's possibility: 0.313650
repeate 1000000's possibility: 0.311525
3.2 C++
#include <cstdio>
#include <random>
#include <numeric>
#include <algorithm>
double solve_prisoners()
{
double ans = 0;
for (int i = 51;i < 101;i++) {
ans += (double) 1.0 / i;
}
return 1 - ans;
}
int getMaxCircle(const std::vector<int> &p)
{
std::vector<int> vis(p.size(), 0);
int ans = 1;
for (int i = 0; i < 100;i++) {
if (!vis[i]) {
int node_cnt = 0;
for (int j = i;!vis[j];j = p[j]) {
vis[j] = 1;
node_cnt++;
}
ans = std::max(ans, node_cnt);
}
}
return ans;
}
void gen_perm(std::vector<int> &pNum)
{
std::random_device rd; // a seed source for the random number engine
std::mt19937 gen(rd()); // mersenne_twister_engine seeded with rd()
int cnt = 99;
for (int cnt = 99; cnt ; --cnt) {
std::uniform_int_distribution<> distrib(0, cnt);
int xth = distrib(gen);
std::swap(pNum[xth], pNum[cnt]);
}
}
double prisoners_success(int n)
{
std::vector<int> pNum(100, 0);
int failure_cnt = 0;
for (int i = 0;i < n;++i) {
std::iota(pNum.begin(), pNum.end(), 0);
gen_perm(pNum);
if (getMaxCircle(pNum) > 50)
failure_cnt++;
}
return (double) 1.0 - (double) failure_cnt / n;
}
int main()
{
printf("probablity: %.6lf\n", solve_prisoners());
printf("simi probablility: %.6lf", prisoners_success(1e7));
return 0;
}
结果:
probablity: 0.311828
simi probablility: 0.311562