【蓝桥杯】【核桃的数量】

本文介绍了一种求三个正整数最小公倍数的方法,适用于软件项目管理中分配资源的问题。具体步骤包括:首先获取三个组的人数,然后利用辗转相除法计算两两之间的最大公约数,最后根据最小公倍数的定义计算并输出每组应得的核桃数量。
摘要由CSDN通过智能技术生成

题目
小张是软件项目经理,他带领3个开发组。工期紧,今天都在加班呢。为鼓舞士气,小张打算给每个组发一袋核桃(据传言能补脑)。
他的要求是:
1. 各组的核桃数量必须相同
2. 各组内必须能平分核桃(当然是不能打碎的)
3. 尽量提供满足1,2条件的最小数量(节约闹革命嘛)
程序从标准输入读入:
a b c
a,b,c都是正整数,表示每个组正在加班的人数,用空格分开(a,b,c<30)
程序输出:
一个正整数,表示每袋核桃的数量。
例如:
用户输入:
2 4 5
程序输出:
20
再例如:
用户输入:
3 1 1
程序输出:
3
资源约定:
峰值内存消耗(含虚拟机) < 64M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.6及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。

分析
分析题目的意思不难发现其实本质是需要你去求出3个数字的最小公倍数
这时候我们就需要知道最小公倍数的算法是怎样的?
最小公倍数=两个数相乘/两个数的最大公约数
最大公约数需要使用辗转相除法来求。

源码

	public static void main(String[] args) {
		Scanner sc = new Scanner(System.in);
		int a = sc.nextInt();
		int b = sc.nextInt();
		int c = sc.nextInt();
		sc.close();
		
		//m为a和b的最小公倍数,n为m和c的最小公倍数
		int m = a * b / gcd(a, b);
		int n = m * c / gcd(m, c);
		
		System.out.println(n);
	}
	
	//求最大公约数
	private static int gcd(int a, int b){
		if(b ==0) return a;
		return gcd(b, a%b);
	}
	

结果
用户输入:
2 4 5
程序输出:
20

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值