% BFGS
function [x, output] = bfgs(fun, dfun, x0, varargin)
% Step 1: initialization
epsi = 1.0e-6;
k = 0;
funcN = 0;
rho = 0.01; l = 0.15; u = 0.85;
x = x0;
f = feval(fun, x, varargin{:});
funcN = funcN + 1;
n = length(x0);
H = eye(n);
% Step 2: check termination condition
g = feval(dfun, x, varargin{:});
while norm(g) > epsi & k <= 100
itercon = true;
d = -H*g;
% Step 3: line search
alpha_0 = 1.0;
gd = g'*d;
[alpha, funcNk, exitflag] = ...
lines(fun, rho, l, u, alpha_0, f, gd, x, d, varargin{:});
funcN = funcN + funcNk;
if exitflag == -1
itercon = false;
restart = true;
H = eye(n);
gold = g;
end
% Step 4: compute ne
最优化——拟牛顿方法matlab程序
最新推荐文章于 2024-08-15 13:19:53 发布
这是一个MATLAB代码示例,展示了如何使用BFGS(Broyden-Fletcher-Goldfarb-Shanno)算法进行最优化。代码中包含了主函数bfgs,以及用于计算目标函数f1和梯度df1的辅助函数。通过调用bfgs('f1', 'df1', x0),可以求解初始点x0=[-1.9;2]的目标函数最小值,最终得到优化后的x值和相关输出信息。"
107257721,8814872,ActiveMQ性能瓶颈与网络延迟影响分析,"['分布式', 'Java', '数据库', '消息队列', '性能调优']
摘要由CSDN通过智能技术生成