最优化——拟牛顿方法matlab程序

这是一个MATLAB代码示例,展示了如何使用BFGS(Broyden-Fletcher-Goldfarb-Shanno)算法进行最优化。代码中包含了主函数bfgs,以及用于计算目标函数f1和梯度df1的辅助函数。通过调用bfgs('f1', 'df1', x0),可以求解初始点x0=[-1.9;2]的目标函数最小值,最终得到优化后的x值和相关输出信息。" 107257721,8814872,ActiveMQ性能瓶颈与网络延迟影响分析,"['分布式', 'Java', '数据库', '消息队列', '性能调优']
摘要由CSDN通过智能技术生成

% BFGS
function [x, output] = bfgs(fun, dfun, x0, varargin)
% Step 1: initialization
epsi = 1.0e-6;
k = 0;
funcN = 0;
rho = 0.01; l = 0.15; u = 0.85;
x = x0;
f = feval(fun, x, varargin{:});
funcN = funcN + 1;
n = length(x0);
H = eye(n);
% Step 2: check termination condition
g = feval(dfun, x, varargin{:});
while norm(g) > epsi & k <= 100
    itercon = true;
    d = -H*g;
% Step 3: line search
    alpha_0 = 1.0;
    gd = g'*d;
    [alpha, funcNk, exitflag] = ...
        lines(fun, rho, l, u, alpha_0, f, gd, x, d, varargin{:});
    funcN = funcN + funcNk;
    if exitflag == -1
        itercon = false;
        restart = true;
        H = eye(n);
        gold = g;
    end
% Step 4: compute ne

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值