拟牛顿法(Quasi-Newton Methods) 前言 正文 代码实现 可运行代码 迭代结果 前言 拟牛顿法是一类迭代优化算法,用于求解无约束优化问题。与牛顿法类似,拟牛顿法的目标是通过迭代逼近目标函数的最优解,但是它不显式计算目标函数的二阶导数 (Hessian矩阵) 。相反,它通过逐步构建一个拟牛顿矩阵 (Quasi-Newton Matrix) 来模拟Hessian矩阵的逆。 以下是拟牛顿法的基本思想和步骤: 初姶伙参数:选择一个初始点 x ( 0 ) x^{(0)}