智能信息融合与目标识别方法

本书《智能信息融合与目标识别方法》探讨了特征级融合目标识别的理论与方法,包括预处理、分水岭算法、特征提取、多种特征融合策略以及目标识别算法。特征融合有助于降低学习复杂度,增强算法鲁棒性,而信息融合技术分为数据级、特征级和决策级融合。目前,研究重点在于融合算法的选择和融合识别系统的建模与实现。尽管面临挑战,这些技术已广泛应用于生活和军事领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐书籍:《智能信息融合与目标识别方法》 胡玉兰 郝博 王东明等著

这本书目录清晰,适合毕业论文撰写的参考

首先分析特征级融合目标识别的基本理论,然后研究了多源图像的预处理、结合阈值分割的分水岭算法、结合聚类分割的分水岭、目标特征提取方法。对于特征融合方法、基于改进免疫遗传的特征融合方法、基于独立分量的特征融合、对典型相关分析特征融合方法的改进。最后介绍了基于优化改进的反向传播神经网络目标识别、模糊支持向量机理论与编程实现、基于模糊支持向量机的识别系统实现。

选择多特征信息融合来作为研究方向,主要有以下几点原因:

  • 目前有文献对图像的特征信息融合方法进行了描述,并说明了其在目标识别中的表现明显好于像素级图像融合和决策级图像融合。
  • 通过图像的特征信息融合不仅能够帮助我们从图像中提取更多于晓的特征信息,来对图像进行综合分析和融合处理,而且还可获得图像中附带可利用的其他特征,在一定程度上帮助系统降低了训练学习的复杂度,从而增强了算法的鲁棒性。
  • 特征信息图像融合通过外部传感器获得的图像数据既能对目标的多特征信息进行融合和保留,也能帮助我们在一定程度上消除原始图像的一些冗余信息。这样就能达到信息压缩的目的,有利于对信息进行有效的实时处理。
  • 目标识别主要就是依靠目标特征数据库,利用特征多传感图像特征信息融合就是为了从不同角度、不同时间、不同空间去对目标信息进行有效采集,听过有效的特征提取,以及特征信息融合,最终的结果就是为了更好地去识别目标,提高目标识别系统的可靠性。
  • 目前对特征融合的研究最为滞后和困难,由于特征的千差万别,特征提取对算法的要求也是千差万别,所以
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值