摘要
基于可穿戴传感器的人体活动识别技术在许多领域应用广泛,从人体活动信号中提取丰富的特征是提高活动识别准确率的关键技术之一。为此,提出基于傅里叶描述子(FDs)、局部二值特征(LBP)和小波能量谱(WES)的融合特征提取人体活动的详细信息。为提高识别系统的可靠性,去除对识别精度没有影响的冗余特征,引入过滤式选择算法Relief-F进行特征选择,筛选对不同活动具有较高区分度的特征,然后利用随机森林分类器对多种不同活动进行精确识别。基于Python3.6平台,在公开的WISDM和ADL数据集上验证该算法的有效性。实验结果表明,多特征融合算法对WISDM和ADL数据集分别取得了94.5%和95.3%的识别准确率,识别效果明显优于单一特征算法,具有很强的鲁棒性。
0 引言
近年来,基于可穿戴传感器的人体活动识别(