图结构练习——最小生成树 Kruskal算法

图结构练习——最小生成树

Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描述

 有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的。现在我们想知道,最少花多少钱修公路可以将所有的城市连在一起,使在任意一城市出发,可以到达其他任意的城市。
 

输入

 输入包含多组数据,格式如下。
第一行包括两个整数n m,代表城市个数和可以修建的公路个数。(n <= 100, m <=1000)
剩下m行每行3个正整数a b c,代表城市a 和城市b之间可以修建一条公路,代价为c。
 

输出

 每组输出占一行,仅输出最小花费。

示例输入

3 2
1 2 1
1 3 1
1 0

示例输出

2
0

提示

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>

using namespace std;

struct node
{
	int u,v,w;
}p[100001];

int parent[1000001];
int n,m;

int cmp(node p1,node p2)
{
	return p1.w<p2.w;
}
int Find(int x)
{
	int r=x;
	while(r!=parent[r])
		r=parent[r];
	int j=x,k;
	while(r!=parent[j])
	{
		k=parent[j];
		parent[j]=r;
		j=k;
	}
	return r;
}
int Merge(int x,int y)
{
	int fx=Find(x);
	int fy=Find(y);
	if(fx!=fy)
		parent[fx]=fy;
}
int Kruskal()
{
	int sum=0,num=0;
	for(int i=1;i<=n;i++)
		parent[i]=i;
	for(int i=0;i<m;i++)
	{
		if(Find(p[i].u)!=Find(p[i].v))
		{
			sum+=p[i].w;
			num++;
			Merge(p[i].u,p[i].v);
		}
		if(num>=n-1)
			break;
	}
	cout<<sum<<endl;
}
int main()
{
	while(cin>>n>>m)
	{
		for(int i=0;i<m;i++)
		{
			cin>>p[i].u>>p[i].v>>p[i].w;
		}
		sort(p,p+m,cmp);
		Kruskal();
	}
}
/*假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点
,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。
之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,
将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。
依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。*/


<span id="transmark"></span> #include<stdio.h>
#include<string.h>
#define M 110
int sum,cnt;
struct nobe
{
    int u,v,w;
}p[100000];
int bin[M];
int find(int x)
{
    int q,k;
    q=x;
    while(q!=bin[q])
    q=bin[q];
    k=x;
    while(k!=q)
    {
        bin[k]=q;
        k=bin[k];
    }
    return q;
}
int merge(int x,int y,int z)
{
    int fx=find(x);
    int fy=find(y);
    if(fx!=fy)
    {
        bin[fx]=fy;
        cnt++;
        sum+=z;
    }
}
int qsort(int l,int r)
{
    int x=p[l].w,i=l,j=r;
    struct nobe t=p[l];
    if(i>=j)
    return 0;
    while(i<j)
    {
        while(i<j&&p[j].w>=x)j--;
        p[i]=p[j];
        while(i<j&&p[i].w<=x)i++;
        p[j]=p[i];
    }
    p[i]=t;
    qsort(l,i-1);
    qsort(i+1,r);
}
int main()
{
    int n,m,i,j;
    while(scanf("%d%d",&n,&m)!=EOF)
    {   sum=0;cnt=0;
        for(i=1;i<=n;i++)
        bin[i]=i;
        for(i=1;i<=m;i++)
        {scanf("%d%d%d",&p[i].u,&p[i].v,&p[i].w);
        }
        qsort(1,m);
         for(i=1; i<=m; i++)
        {
            merge(p[i].u,p[i].v,p[i].w);
            if(cnt==n-1)                    //cnt统计路的数量
                break;
        }
        printf("%d\n",sum);
    }
    return 0;
}
 








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值