图结构练习——最小生成树
Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^
题目描述
有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的。现在我们想知道,最少花多少钱修公路可以将所有的城市连在一起,使在任意一城市出发,可以到达其他任意的城市。
输入
输入包含多组数据,格式如下。
第一行包括两个整数n m,代表城市个数和可以修建的公路个数。(n <= 100, m <=1000)
剩下m行每行3个正整数a b c,代表城市a 和城市b之间可以修建一条公路,代价为c。
输出
每组输出占一行,仅输出最小花费。
示例输入
3 2 1 2 1 1 3 1 1 0
示例输出
2 0
提示
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
struct node
{
int u,v,w;
}p[100001];
int parent[1000001];
int n,m;
int cmp(node p1,node p2)
{
return p1.w<p2.w;
}
int Find(int x)
{
int r=x;
while(r!=parent[r])
r=parent[r];
int j=x,k;
while(r!=parent[j])
{
k=parent[j];
parent[j]=r;
j=k;
}
return r;
}
int Merge(int x,int y)
{
int fx=Find(x);
int fy=Find(y);
if(fx!=fy)
parent[fx]=fy;
}
int Kruskal()
{
int sum=0,num=0;
for(int i=1;i<=n;i++)
parent[i]=i;
for(int i=0;i<m;i++)
{
if(Find(p[i].u)!=Find(p[i].v))
{
sum+=p[i].w;
num++;
Merge(p[i].u,p[i].v);
}
if(num>=n-1)
break;
}
cout<<sum<<endl;
}
int main()
{
while(cin>>n>>m)
{
for(int i=0;i<m;i++)
{
cin>>p[i].u>>p[i].v>>p[i].w;
}
sort(p,p+m,cmp);
Kruskal();
}
}
/*假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点
,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。
之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,
将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。
依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。*/
<span id="transmark"></span> #include<stdio.h>
#include<string.h>
#define M 110
int sum,cnt;
struct nobe
{
int u,v,w;
}p[100000];
int bin[M];
int find(int x)
{
int q,k;
q=x;
while(q!=bin[q])
q=bin[q];
k=x;
while(k!=q)
{
bin[k]=q;
k=bin[k];
}
return q;
}
int merge(int x,int y,int z)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
bin[fx]=fy;
cnt++;
sum+=z;
}
}
int qsort(int l,int r)
{
int x=p[l].w,i=l,j=r;
struct nobe t=p[l];
if(i>=j)
return 0;
while(i<j)
{
while(i<j&&p[j].w>=x)j--;
p[i]=p[j];
while(i<j&&p[i].w<=x)i++;
p[j]=p[i];
}
p[i]=t;
qsort(l,i-1);
qsort(i+1,r);
}
int main()
{
int n,m,i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{ sum=0;cnt=0;
for(i=1;i<=n;i++)
bin[i]=i;
for(i=1;i<=m;i++)
{scanf("%d%d%d",&p[i].u,&p[i].v,&p[i].w);
}
qsort(1,m);
for(i=1; i<=m; i++)
{
merge(p[i].u,p[i].v,p[i].w);
if(cnt==n-1) //cnt统计路的数量
break;
}
printf("%d\n",sum);
}
return 0;
}