POJ 2891 Strange Way to Express Integers解线性同余方程组(中国剩余定理不互质版)

题意:给出k个模方程组:x mod ai = ri。求x的最小正值。如果不存在这样的x,那么输出-1.

题解:

由于这道题目里面的ai、ri之间不满足两两互质的性质,所以不能用中国剩余定理直接求解。

不过,我们可以模仿中国剩余定理的做法来解决这个问题。

如果只有一个方程:x mod a0 = r0。那么,显然x的最小正值为a0+r0。

根据模的性质,我们容易得知,x+a0*k均为该方程的解。(k为正整数)

如果多了一个方程:x mod a1 = r1。那么,我们为了使之间求得的解x0=a0+r0能够同时满足这两个方程,只好令

x0=r0+a0*k,显然这样做x0仍然满足第一个方程。这时候我 们相当于要求解这样一个模方程:(r0+a0*k) mod a1 = 

r1。这个方程我们可以用拓展欧几里得算法求得k的值。这样,只要令x0变成x0+a0*k,就能同时满足这两个方程了。

推而广之,对于方程x mod ai = ri,假如我们之前求得的解为X,那么我们要令X变成X+k*LCM(a0,a1,a2...ai-1),使得

它满足这个方程。k我们可以用拓展欧几里得 算法求解,LCM可以在每一次更新,这样就能在接近O(klogk)的时间复

杂度内解决这个问题了。

无解的判断:若某个(X+k*LCM) mod ai = ri无整数解,那么原方程组无解。

在<<ACM-ICPC程序设计系列--数论及应用>>的54页有解释。

见黑书P230页。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#define LL long long
using namespace std;
LL extend_gcd(LL a,LL b,LL &x,LL &y){
    if(a==0&&b==0) return -1;
    if(b==0){
        x=1,y=0;return a;
    }
    LL d=extend_gcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}
int main(){
    LL i,n,a1,r1,a2,r2,ans,d,x,y;
    while(~scanf("%lld",&n)){
        bool have=1;
        scanf("%lld%lld",&a1,&r1);
        for(i=1;i<n;i++){
            scanf("%lld%lld",&a2,&r2);
            LL a,b,c;
            a=a1,b=a2,c=r2-r1;
            d=extend_gcd(a,b,x,y);
            if(!have) continue;
            if(c%d!=0){
                have=0;
            }
            int t=b/d;
            x=(x*(c/d)%t+t)%t;
            r1=a1*x+r1;
            a1=a1*(a2/d);
        }
        if(!have){
            puts("-1");
        }
        else printf("%lld\n",r1);
    }
    return 0;
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值