粗糙集理论

写在前面

形式化(formal):在完备数学概念基础上,采用具有确定语义定义并有严格语法的语言表达的规范风格。
半形式化(semiformal):采用具有确定语义定义并有严格语法的语言表达的规范风格。
非形式化(informal):采用自然语言表达的规范风格。

粗糙集



1 . 粗糙集相关概念


又名:Rough Set、粗糙集、粗集。
提出:由Pwalak教授于1982年提出。
定义:RS是一种可以 定量分析 处理 不精确不一致不完整 信息与知识的 数学工具

目前相关国际会议:RSCTC、RSFDGrC和RSKT。

理论和应用基础:从近似空间导出的一对近似算子(上近似算子、下近似算子),又称上近似集合、下近似集合。

研究方法:构造化方法和公理化方法(代数方法、算子方法)

方法含义
构造化基本要素:论域上的二元关系、划分、覆盖、邻域系统、布尔代数
定义粗糙近似算子
导出粗糙集代数系统
公理化
/代数
/算子
满足某些公理的一元集合算子
某些公理可以保证一些特殊类型的二元关系的存在

形式描述:集合、算子

与其他研究不确定和不精确理论区别:不需要提供问题所需要数据集合以外的任何先验信息(不需先验信息)。

主要研究方向:属性约简、规则获取、基于粗糙集的计算智能算法研究。

2 . 概念、可定义集


2.1 信息表


:一组对象的集合,对象由一组属性描述。如图1-1。信息表

图1-1

设M为信息表,则M的形式化描述为:
M = ( U , A t , { V a ∣ a ∈ A t } , { I a ∣ a ∈ A t } ) M=(U,At,\{V_a|a\in At\},\{I_a|a\in At\}) M=(U,At,{VaaAt},{IaaAt})
U = { x 1 , x 2 , . . . , x n } U = \{x_1,x_2,...,x_n\} U={x1,x2,...,xn} :有限对象集合,又称:论域。
A t = { 头 疼 , 肌 肉 疼 , 体 温 、 流 感 } At = \{头疼,肌肉疼,体温、流感\} At={}:有限非空的属性集合。
V a V_a Va:表示属性 a ∈ A t a\in At aAt的属性值范围,即属性 a 的值域。
I a : U → V a I_a:U\rightarrow V_a Ia:UVa:是一个信息函数; I a ( x ) I_a(x) Ia(x)代表对象x在属性a的取值(属性值)。


2.2 决策逻辑语言 L \mathbb{L} L


To 更好的定义 概 念 的内涵,采用 决策逻辑语言 来分析决策表。
决策逻辑语言:由原子公式组成。

公式
表示方式:(属性,数据),比如:(头疼,是)
含义 :代表具有某些性质的子集;比如:(头疼,是)可以描述所有具有 头疼 属性和头疼属性值为 的所有对象。
m( p )一个公式 p ,则 m( p ) 代表具有p性质的对象全体。

概念的形式化描述:
信息表M中的概念:( p , m( p ) )
概念外延:m( p ) = 满足公式p的所有对象全体
概念内涵:p = 信息表M中对对象子集m(p)的描述

由于Rough Set中很多时候考虑的只是一个属性子集 A ∈ A t A\in At AAt,即在决策逻辑语言中只是考虑 A A A中的属性
L ( A ) \mathbb{L}(A) L(A):表示由属性子集 A 定义的语言 L \mathbb{L} L


2.3 可定义集 的 形式化定义


定义一(子集可定义):

在信息表M中,如果称对象子集 X ⊆ U X\subseteq U XU是可被属性子集 A ⊆ A t A\subseteq At AAt定义的,当且仅当在语言 L ( A ) \mathbb{L}(A) L(A)中存在一个公式 p 使得 X = m ( p ) X=m( p) X=m(p),否则,X为不可定义的。


换句话说:只有当在语言 L ( A ) \mathbb{L}(A) L(A)中存在一个公式 p 使得对象子集 X = m ( p ) X=m( p) X=m(p)时候,子集 X ⊆ U X\subseteq U XU是可被属性子集 A ⊆ A t A\subseteq At AAt定义的。

可定义集的全体表示:
D e f ( U , L ( A ) ) = { m ( p ) ∣ p ∈ L ( A ) } Def(U,\mathbb{L}(A)) = \{ m( p ) | p \in \mathbb{L}(A)\} Def(U,L(A))={m(p)pL(A)}

某种角度来讲概念的外延m(p)就是可定义集。
L ( A ) \mathbb{L}(A) L(A)定义的概念集合表示:
D e f C o n ( U , L ( A ) ) = { ( p , m ( p ) ) ∣ p ∈ L ( A ) } DefCon(U,\mathbb{L}(A)) = \{ (p, m( p )) | p \in \mathbb{L}(A)\} DefCon(U,L(A))={(p,m(p))pL(A)}


2.4 等价关系E(A)| 不可分辨关系


等价关系 : E(A)
等价类: [ x ] E ( A ) [x]_{E(A)} [x]E(A) ,由等价关系E(A)确定

对象 x i 、 x j x_i、x_j xixj L ( A ) \mathbb{L}(A) L(A)语言中有相同的 公式 p 描述(note: x i 、 x j x_i、x_j xixj有相同的属性值),那么两个对象 x i 、 x j x_i、x_j xixj是等价的。

x i 、 x j x_i、x_j xixj构成的可定义集合 就是 属性集A上的等价关系E(A)论域U上 产生的划分,记为 U / E ( A ) = { [ x ] E ( A ) ∣ x ∈ U } U/E(A) = \{ [ x ]_{E(A)} | x \in U\} U/E(A)={[x]E(A)xU}

example:

等价类: U / E ( A ) = { { x 1 , x 2 , x 3 } , { x 4 , x 5 } , { x 6 } } U/E(A)= \{ \{x_1,x_2,x_3\}, \{x_4,x_5 \},\{x_6\}\} U/E(A)={{x1,x2,x3},{x4,x5},{x6}}
:由属性子集A划分了三个等价类。



3 . 近似空间、上下近似

3.1 近似空间

决策逻辑语言 L ( A ) \mathbb{L}(A) L(A)所有可定义集 正好可以构造成一个 σ \sigma σ代数 σ ( U / E ( A ) ) \sigma(U/E(A)) σ(U/E(A))
D e f ( U , L ( A ) ) = σ ( U / E ( A ) ) Def(U,\mathbb{L}(A)) = \sigma(U/E(A)) Def(U,L(A))=σ(U/E(A))

σ \sigma σ代数,即 σ ( U / E ( A ) ) \sigma(U/E(A)) σ(U/E(A)):包含 ∅ \emptyset 、等价关系E(A)构成的等价类和其并集。并且其交、并和补运算是封闭的。

a p r = ( U , E ( A ) ) apr=(U, E(A)) apr=(U,E(A)) :称为一个Pawlaw近似空间,简称:近似空间。

封闭性:某一类数组成的集合记作A,有一种运算方式记作f, A中任意两个元素通过f得到的结果仍然在A中,那么f对于A是封闭的。

简单的说:近似空间 = 所有可定义集的集合 U ∅ \empty

3.2 上下近似

可定义集可以使用公式来进行精确的描述。那么不可定义集合呢?
使用可定义集上下界逼近的方式来描述。

定义二(近似算子):

:设E(A)是信息表M上的等价关系,$X\subseteq U,上下近似算子 a p r ‾ E ( A ) \overline {apr}_{E(A)} aprE(A) , a p r ‾ E ( A ) \underline {apr}_{E(A)} aprE(A)为:(后用简写: a p r ‾ \overline {apr} apr , a p r ‾ \underline {apr} apr )

上近似:
a p r ‾ ( X ) = ∪ { Y ∣ Y ∈ σ ( U / E ( A ) ) , Y ∩ X ≠ ∅ } \overline {apr}(X) = \cup\{ Y| Y\in \sigma(U/E(A)), Y\cap X \neq \empty \} apr(X)={YYσ(U/E(A)),YX̸=}
= ∩ { Y ∣ Y ∈ D e f ( U , L ( A ) ) , Y ⊆ X } = \cap\{ Y| Y\in Def(U,\mathbb{L}(A)), Y \subseteq X \} ={YYDef(U,L(A)),YX}


下近似:
a p r ‾ ( X ) = ∪ { Y ∣ Y ∈ σ ( U / E ( A ) ) , Y ⊆ X } \underline {apr}(X) = \cup\{ Y| Y\in \sigma(U/E(A)),Y \subseteq X \} apr(X)={YYσ(U/E(A)),YX}
= ∪ { Y ∣ Y ∈ D e f ( U , L ( A ) ) , Y ⊆ X } = \cup\{ Y| Y\in Def(U,\mathbb{L}(A)), Y \subseteq X \} ={YYDef(U,L(A)),YX}

上下近似

下近似 == 正域

决策粗糙集

根据粗糙集是否使用了统计信息,粗糙集模型扩展大致有两类:经典怠速和粗糙集模型、概率型粗糙集模型。

Note:下篇文章引入决策粗糙集。

如想详细了解粗糙集可查阅论文:
《粗糙集理论与应用研究综述》A Survey on Rough Set Theory and Applications 【作者】 王国胤; 姚一豫; 于洪;计算机学报 ,Chinese Journal of Computers , 编辑部邮箱 ,2009年07期

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值