题目大意:求 n∈[1,1018] 内 dig_sum(n)==dig_sum(137n) 的n的个数
f[i,j,k]表示前 i 位,137n - n 的进位值为 j,当前位上的贡献差为 k 的方案数
窝弱,想了好久QAQ
【答案】20444710234716473
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<string>
#include<cstring>
#define LL long long
using namespace std;
LL ans;
LL f[20][200][400];
int dig_sum(int x)
{
int ret = 0;
for (;x;ret += x % 10,x /= 10);
return ret;
}
int main()
{
f[0][0][200] = 1;
for (int i = 0;i < 18;i ++)
for (int j = 0;j < 200;j ++)
for (int k = 0;k < 400;k ++)
for (int x = 0;x <= 9;x ++)
{
int y = j + 137 * x;
f[i + 1][y / 10][k + y % 10 - x] += f[i][j][k];
}
for (int i = 0;i < 200;i ++)
for (int j = 0;j < 400;j ++)
if (dig_sum(i) + j == 200)
ans += f[18][i][j];
cout << ans << endl;
return 0;
}