最近总被虐…被虐…虐…
%%%fsf大爷,太强辣
欢迎神犇打脸(求轻喷
题目大意:给出 x0 ,每次操作将 x 变成 (kx + b) mod p,求最少多少次操作能回到 x0
…首先 k = 0,1 要特判 …
n 次操作后的值就是
∑n−1i=0kib+knx
所以就能得到
∑i=0n−1kib+knx≡x(modp)kn−1k−1(b+(k−1)x)=0(modp)
两边可以约去 gcd((k−1)x+b,p) ,现在令 p /= gcd
现在就是求
kn≡1 (modp(k−1))
这里 gcd(k,p)==1 ,不然无解
但是右边不是质数,所以要分解质因数然后 CRT 合并(其实这步是多余的。。。我又智障了嘛。。。TAT
对于
an≡1 (mod pk)
设最小的 n 为 x,那么有 x|φ(pk) 且对于所有 n 满足 x|n 都满足上述表达式
所以对于 n ,若满足上述表达式且 i|n 且 ni 也能满足上述表达式,那么 n 就可以除掉 i
然而 φ 的因数都小于等于 p,就可以暴力分解了(雾
为什么感觉不太科学…
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<string>
#include<cstring>
#include<ctime>
#include<cmath>
#define INF 2000000020
#define LL long long
using namespace std;
LL T,k,b,x,p,tot,ans;
struct node{int p,k;}A[100];
LL gcd(LL a,LL b)
{
return b ? gcd(b,a % b) : a;
}
LL lcm(LL a,LL b)
{
return a / gcd(a,b) * b;
}
LL ksm(LL a,LL b,LL p)
{
LL ret = 1;
for (;b;b >>= 1,a = a * a % p)
if (b & 1) ret = ret * a % p;
return ret;
}
void divid(int x)
{
for (int i = 2;i * i <= x;i ++)
if (x % i == 0)
{
A[++ tot] = (node){i,1},x /= i;
for (;x % i == 0;x /= i,A[tot].k ++);
}
if (x ^ 1) A[++ tot] = (node){x,1};
}
bool cmp(const node &a,const node &b)
{
return a.p < b.p;
}
LL cal(int tt)
{
LL P = 1,phi,p = A[tt].p;
for (int i = 1;i <= A[tt].k;i ++) P *= p;
phi = P / p * (p - 1);
while (phi % p == 0 && ksm(k,phi / p,P) == 1) phi /= p;
p --;
for (int i = 2;i * i <= p;i ++)
{
for (;phi % i == 0 && ksm(k,phi / i,P) == 1;phi /= i);
for (;phi % (p/i) == 0 && ksm(k,phi / (p/i),P) == 1;phi /= (p/i));
}
if (phi % p == 0 && ksm(k,phi / p,P) == 1) phi /= p;
return phi;
}
int main()
{
cin >> T;
while (T --)
{
cin >> k >> b >> x >> p;
if (!k) {printf("%d\n",b == x ? 1 : -1);continue;}
if (k == 1) {printf("%d\n",b ? p / gcd(p,b): 1);continue;}
p /= gcd((k - 1) * x + b,p);
if (p == 1) {puts("1");continue;}
if (gcd(p,k) ^ 1) {puts("-1");continue;}
tot = 0,divid(p),divid(k - 1);
sort(A + 1,A + tot + 1,cmp);
for (int i = 2;i <= tot;i ++)
if (A[i].p == A[i - 1].p) A[i].k += A[i - 1].k,A[i - 1].p = INF;
sort(A + 1,A + tot + 1,cmp);
for (;A[tot].p == INF;tot --);
ans = 1;
for (int i = 1;i <= tot;i ++)
ans = lcm(ans,cal(i));
cout << ans << endl;
}
return 0;
}