HDU 5393 【数论】

最近总被虐…被虐…虐…

%%%fsf大爷,太强辣
欢迎神犇打脸(求轻喷

题目大意:给出 x0 ,每次操作将 x 变成 (kx + b) mod p,求最少多少次操作能回到 x0

…首先 k = 0,1 要特判 …

n 次操作后的值就是 n1i=0kib+knx
所以就能得到

i=0n1kib+knxx(modp)kn1k1(b+(k1)x)=0(modp)

两边可以约去 gcd((k1)x+b,p) ,现在令 p /= gcd
现在就是求
kn1 (modp(k1))

这里 gcd(k,p)==1 ,不然无解
但是右边不是质数,所以要分解质因数然后 CRT 合并(其实这步是多余的。。。我又智障了嘛。。。TAT
对于
an1 (mod pk)

设最小的 n 为 x,那么有 x|φ(pk) 且对于所有 n 满足 x|n 都满足上述表达式
所以对于 n ,若满足上述表达式且 i|n ni 也能满足上述表达式,那么 n 就可以除掉 i
然而 φ 的因数都小于等于 p,就可以暴力分解了(雾

为什么感觉不太科学…

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<string>
#include<cstring>
#include<ctime>
#include<cmath>
#define INF 2000000020
#define LL long long
using namespace std;

LL T,k,b,x,p,tot,ans;
struct node{int p,k;}A[100];

LL gcd(LL a,LL b)
{
    return b ? gcd(b,a % b) : a;
}

LL lcm(LL a,LL b)
{
    return a / gcd(a,b) * b;
}

LL ksm(LL a,LL b,LL p)
{
    LL ret = 1;
    for (;b;b >>= 1,a = a * a % p)
        if (b & 1) ret = ret * a % p;
    return ret;
}

void divid(int x)
{
    for (int i = 2;i * i <= x;i ++)
        if (x % i == 0)
        {
            A[++ tot] = (node){i,1},x /= i;
            for (;x % i == 0;x /= i,A[tot].k ++);
        }
    if (x ^ 1) A[++ tot] = (node){x,1};
}

bool cmp(const node &a,const node &b)
{
    return a.p < b.p;
}

LL cal(int tt)
{
    LL P = 1,phi,p = A[tt].p;
    for (int i = 1;i <= A[tt].k;i ++) P *= p;
    phi = P / p * (p - 1);
    while (phi % p == 0 && ksm(k,phi / p,P) == 1) phi /= p;
    p --;
    for (int i = 2;i * i <= p;i ++)
    {
        for (;phi % i == 0 && ksm(k,phi / i,P) == 1;phi /= i);
        for (;phi % (p/i) == 0 && ksm(k,phi / (p/i),P) == 1;phi /= (p/i));
    }
    if (phi % p == 0 && ksm(k,phi / p,P) == 1) phi /= p;
    return phi;
}

int main()
{
    cin >> T;
    while (T --)
    {
        cin >> k >> b >> x >> p;
        if (!k) {printf("%d\n",b == x ? 1 : -1);continue;}
        if (k == 1) {printf("%d\n",b ? p / gcd(p,b): 1);continue;}
        p /= gcd((k - 1) * x + b,p);
        if (p == 1) {puts("1");continue;}
        if (gcd(p,k) ^ 1) {puts("-1");continue;}
        tot = 0,divid(p),divid(k - 1);
        sort(A + 1,A + tot + 1,cmp);
        for (int i = 2;i <= tot;i ++)
            if (A[i].p == A[i - 1].p) A[i].k += A[i - 1].k,A[i - 1].p = INF; 
        sort(A + 1,A + tot + 1,cmp);
        for (;A[tot].p == INF;tot --);
        ans = 1;
        for (int i = 1;i <= tot;i ++)
            ans = lcm(ans,cal(i));
        cout << ans << endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>