# Key Set

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1624    Accepted Submission(s): 866

Problem Description
soda has a set S with n integers {1,2,,n}. A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of S are key set.

Input
There are multiple test cases. The first line of input contains an integer T (1T105), indicating the number of test cases. For each test case:

The first line contains an integer n (1n109), the number of integers in the set.

Output
For each test case, output the number of key sets modulo 1000000007.

Sample Input
4 1 2 3 4

Sample Output
0 1 3 7

C(m,0)+C(m,2)+C(m,4)+...=2^(m-1),减去空集个数1就是答案.

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <map>
#include <vector>
using namespace std;
#define mod 1000000007

int n;

long long qpow (long long a, long long b) {
if (b == 0)
return 1;
long long ans = qpow (a, b>>1);
ans = ans*ans%mod;
if (b&1)
ans = ans*a%mod;
return ans;
}

long long solve () {
long long m = (n+1)/2, p = n-m;
return qpow (2, p)*qpow (2, m-1)%mod-1;
}

int main () {
//freopen ("in.txt", "r", stdin);
int t;
scanf ("%d", &t);
while (t--) {
cin >> n;
cout << (solve ()+mod)%mod << endl;
}
return 0;
}


#### hdu 5363

2015-08-08 16:43:18

#### hdu 5363 Key Set（水）

2015-08-07 19:23:45

#### HDU - 5363 Key Set

2016-07-23 15:55:42

#### hdu 5363 Key Set

2015-08-07 13:33:56

#### HDU 5363 Key Set

2015-08-06 18:51:25

#### HDU 5363 Key Set(快速幂)

2015-08-06 21:29:52

#### hdu 5363 Key Set 矩阵快速幂

2015-08-06 18:53:02

#### HDU 5363 Key Set (快速幂）

2016-07-23 11:23:57

#### Hdu 5363 Key Set【快速幂运算】

2015-08-07 18:52:24

#### HDU 5363 Key Set【快速幂取模】

2016-08-23 15:27:23