参考链接
- https://docs.dgl.ai/guide/training-node.html#guide-training-node-classification
- https://docs.dgl.ai/guide/training.html
同构图上的节点分类
处理数据
节点分类任务是针对单图的,你可以使用DGL内置的数据集或继承DGLDataset构建的数据集,如“Citeseer”:
import dgl
dataset = dgl.data.CiteseerGraphDataset()
graph = dataset[0]
这里使用“跟着官方文档学DGL框架第一天”中的“空手道俱乐部”数据集。按6:2:2的比例划分为训练集、验证集和测试集。
def build_karate_club_graph():
# All 78 edges are stored in two numpy arrays. One for source endpoints
# while the other for destination endpoints.
src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10,
10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21,
25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32,
32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33,
33, 33, 33, 33, 33, 33, 33, 33, 33, 33])
dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4,
5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23,
24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23,
29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30,
31, 32])
# Edges are directional in DGL; Make them bi-directional.
u = np.concatenate([src, dst])
v = np.concatenate([dst, src])
# Construct a DGLGraph
return dgl.graph((u, v))
G = build_karate_club_graph()
idx_train = np.array(range(int(G.number_of_nodes() * 0.6)))
idx_val = idx_train + int(G.number_of_nodes() * 0.2)
idx_test = np.array([i for i in np.array(range(G.number_of_nodes())) if (i not in idx_train) and (i not in idx_val)])
labels = torch.randint(0, 2, (G.number_of_nodes(),))
顺便复习一下“跟着官方文档学DGL框架第七天”中的内容,将上面的数据集处理为标准的DGLDataset类,命名为MyDataset。为了简便,这里只实现了必要的“process()”、“_getitem_()”和“_len_()”三个函数。“process()”主要为节点附上了掩码和标签,用于后续训练;对于单图数据集,“__ getitem __()”和“__ len __()”的实现是固定的。
class MyDataset(DGLDataset):
def __init__(self,
url=None,
raw_dir=None,
save_dir=None,
force_reload=False,
verbose=False):
super(MyDataset, self).__init__(name='dataset_name',
url=url,
raw_dir=raw_dir,
save_dir=save_dir,
force_reload=force_reload,
verbose=verbose)
def process(self):
# 跳过一些处理的代码
# === 跳过数据处理 ===
# 构建图
# g = dgl.graph(G)
g = G
train_mask = _sample_mask(idx_train, g.number_of_nodes())
val_mask = _sample_mask(idx_val, g.number_of_nodes())
test_mask = _sample_mask(idx_test, g.number_of_nodes())
# 划分掩码
g.ndata['train_mask'] = generate_mask_tensor(train_mask)
g.ndata['val_mask'] = generate_mask_tensor(val_mask)
g.ndata['test_mask'] = generate_mask_tensor(test_mask)
# 节点的标签
g.ndata['label'] = torch.tensor(labels)
# 节点的特征
g.ndata['feat'] = torch.randn(g.number_of_nodes(), 10)
self._num_labels = int(torch.max(labels).item() + 1)
self._labels = labels
self._g = g
def __getitem__(self, idx):
assert idx == 0, "这个数据集里只有一个图"
return self._g
def __len__(self):
return 1
构建图卷积模型
这里使用的是GraphSAGE中的图卷积模块,直接调用“SAGEConv()”即可,叠加了两层。
class SAGE(nn.Module):
def __init__(self, in_feats, hid_feats, out_feats):
super().__init__()
# 实例化SAGEConve,in_feats是输入特征的维度,out_feats是输出特征的维度,aggregator_type是聚合函数的类型
self.conv1 = dglnn.SAGEConv(
in_feats=in_feats, out_feats=hid_feats, aggregator_type='mean')
self.conv2 = dglnn.SAGEConv(
in_feats=hid_feats, out_feats=out_feats, aggregator_type='mean')
def forward(self, graph, inputs):
# 输入是节点的特征
h = self.conv1(graph, inputs)
h = F.relu(h)
h = self.conv2(graph, h)
return h
评估函数
这里是分类任务,选择accuracy作为评价指标。
def evaluate(model, graph, features, labels, mask):
model.eval()
with torch.no_grad():
logits = model(graph, features)
logits = logits[mask]
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
开始训练
把数据喂给模型后,训练方式与传统pytorch无异。
dataset = MyDataset()
graph = dataset[0]
node_features = graph.ndata['feat']
node_labels = graph.ndata['label']
train_mask = graph.ndata['train_mask']
valid_mask = graph.ndata['val_mask']
test_mask = graph.ndata['test_mask']
n_features = node_features.shape[1]
n_labels = int(node_labels.max().item() + 1)
for epoch in range(10):
model.train()
# 使用所有节点(全图)进行前向传播计算
logits = model(graph, node_features)
# 计算损失值
loss = F.cross_entropy(logits[train_mask], node_labels[train_mask])
# 计算验证集的准确度
acc = evaluate(model, graph, node_features, node_labels, valid_mask)
# 进行反向传播计算
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())
完整代码附在文末
异构图上的节点分类
处理数据
下面以一个手工构建的异构图为例。该异构图包含六种关系:
-
(‘user’, ‘follow’, ‘user’)
-
(‘user’, ‘followed-by’, ‘user’)
-
(‘user’, ‘click’, ‘item’)
-
(‘item’, ‘clicked-by’, ‘user’)
-
(‘user’, ‘dislike’, ‘item’)
-
(‘item’, ‘disliked-by’, ‘user’)
随机生成各种关系的源节点与目标节点(可能会出现自己与自己建立关系),然后赋予随机的特征与标签,由于要做节点分类,最后需要选择60%的节点加上训练集掩码,作为训练集。
import numpy as np
import torch
n_users = 1000
n_items = 500
n_follows = 3000
n_clicks = 5000
n_dislikes = 500
n_hetero_features = 10
n_user_classes = 5
n_max_clicks = 10
follow_src = np.random.randint(0, n_users, n_follows)
follow_dst = np.random.randint(0, n_users, n_follows)
click_src = np.random.randint(0, n_users, n_clicks)
click_dst = np.random.randint(0, n_items, n_clicks)
dislike_src = np.random.randint(0, n_users, n_dislikes)
dislike_dst = np.random.randint(0, n_items, n_dislikes)
hetero_graph = dgl.heterograph({
('user', 'follow', 'user'): (follow_src, follow_dst),
('user', 'followed-by', 'user'): (follow_dst, follow_src),
('user', 'click', 'item'): (click_src, click_dst),
('item', 'clicked-by', 'user'): (click_dst, click_src),
('user', 'dislike', 'item'): (dislike_src, dislike_dst),
('item', 'disliked-by', 'user'): (dislike_dst, dislike_src)})
hetero_graph.nodes['user'].data['feature'] = torch.randn(n_users, n_hetero_features)
hetero_graph.nodes['item'].data['feature'] = torch.randn(n_items, n_hetero_features)
hetero_graph.nodes['user'].data['label'] = torch.randint(0, n_user_classes, (n_users,))
hetero_graph.edges['click'].data['label'] = torch.randint(1, n_max_clicks, (n_clicks,)).float()
# 在user类型的节点和click类型的边上随机生成训练集的掩码
hetero_graph.nodes['user'].data['train_mask'] = torch.zeros(n_users, dtype=torch.bool).bernoulli(0.6)
hetero_graph.edges['click'].data['train_mask'] = torch.zeros(n_clicks, dtype=torch.bool).bernoulli(0.6)
构建图卷积模型
异构图卷积模型,先分别在各种关系类型(边类型)上做卷积,然后将目标节点上各关系类型(边类型)得到的消息聚合起来。具体见“跟着官方文档学DGL框架第六天”
这里叠了两层异构图卷积网络,每一层异构图卷积网络由分别对每种关系类型(边类型)使用GCN(调用“GraphConv()”)。
class RGCN(nn.Module):
def __init__(self, in_feats, hid_feats, out_feats, rel_names):
super().__init__()
# 实例化HeteroGraphConv,in_feats是输入特征的维度,out_feats是输出特征的维度,aggregate是聚合函数的类型
self.conv1 = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(in_feats, hid_feats)
for rel in rel_names}, aggregate='sum')
self.conv2 = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(hid_feats, out_feats)
for rel in rel_names}, aggregate='sum')
def forward(self, graph, inputs):
# 输入是节点的特征字典
h = self.conv1(graph, inputs)
h = {k: F.relu(v) for k, v in h.items()}
h = self.conv2(graph, h)
return h
开始训练
模型的输入是一个字典,键为类型,值为相应的特征张量;模型的输出同样是一个字典,键为类型,值为新的特征张量。
model = RGCN(n_hetero_features, 20, n_user_classes, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data['feature']
labels = hetero_graph.nodes['user'].data['label']
train_mask = hetero_graph.nodes['user'].data['train_mask']
node_features = {'user': user_feats, 'item': item_feats}
opt = torch.optim.Adam(model.parameters())
for epoch in range(5):
model.train()
# 使用所有节点的特征进行前向传播计算,并提取输出的user节点嵌入
logits = model(hetero_graph, node_features)['user']
# 计算损失值
loss = F.cross_entropy(logits[train_mask], labels[train_mask])
# 计算验证集的准确度。在本例中省略。
# 进行反向传播计算
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())
完整代码
同构图上节点分类
import dgl
import dgl.nn as dglnn
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from dgl.data.utils import generate_mask_tensor
from dgl.data import DGLDataset
import torch
def build_karate_club_graph():
# All 78 edges are stored in two numpy arrays. One for source endpoints
# while the other for destination endpoints.
src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10,
10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21,
25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32,
32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33,
33, 33, 33, 33, 33, 33, 33, 33, 33, 33])
dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4,
5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23,
24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23,
29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30,
31, 32])
# Edges are directional in DGL; Make them bi-directional.
u = np.concatenate([src, dst])
v = np.concatenate([dst, src])
# Construct a DGLGraph
return dgl.graph((u, v))
G = build_karate_club_graph()
idx_train = np.array(range(int(G.number_of_nodes() * 0.6)))
idx_val = idx_train + int(G.number_of_nodes() * 0.2)
idx_test = np.array([i for i in np.array(range(G.number_of_nodes())) if (i not in idx_train) and (i not in idx_val)])
labels = torch.randint(0, 2, (G.number_of_nodes(),))
def _sample_mask(idx, l):
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return mask
class MyDataset(DGLDataset):
def __init__(self,
url=None,
raw_dir=None,
save_dir=None,
force_reload=False,
verbose=False):
super(MyDataset, self).__init__(name='dataset_name',
url=url,
raw_dir=raw_dir,
save_dir=save_dir,
force_reload=force_reload,
verbose=verbose)
def process(self):
# 跳过一些处理的代码
# === 跳过数据处理 ===
# 构建图
# g = dgl.graph(G)
g = G
train_mask = _sample_mask(idx_train, g.number_of_nodes())
val_mask = _sample_mask(idx_val, g.number_of_nodes())
test_mask = _sample_mask(idx_test, g.number_of_nodes())
# 划分掩码
g.ndata['train_mask'] = generate_mask_tensor(train_mask)
g.ndata['val_mask'] = generate_mask_tensor(val_mask)
g.ndata['test_mask'] = generate_mask_tensor(test_mask)
# 节点的标签
g.ndata['label'] = torch.tensor(labels)
# 节点的特征
g.ndata['feat'] = torch.randn(g.number_of_nodes(), 10)
self._num_labels = int(torch.max(labels).item() + 1)
self._labels = labels
self._g = g
def __getitem__(self, idx):
assert idx == 0, "这个数据集里只有一个图"
return self._g
def __len__(self):
return 1
class SAGE(nn.Module):
def __init__(self, in_feats, hid_feats, out_feats):
super().__init__()
# 实例化SAGEConve,in_feats是输入特征的维度,out_feats是输出特征的维度,aggregator_type是聚合函数的类型
self.conv1 = dglnn.SAGEConv(
in_feats=in_feats, out_feats=hid_feats, aggregator_type='mean')
self.conv2 = dglnn.SAGEConv(
in_feats=hid_feats, out_feats=out_feats, aggregator_type='mean')
def forward(self, graph, inputs):
# 输入是节点的特征
h = self.conv1(graph, inputs)
h = F.relu(h)
h = self.conv2(graph, h)
return h
dataset = MyDataset()
# dataset = dgl.data.CiteseerGraphDataset()
graph = dataset[0]
node_features = graph.ndata['feat']
node_labels = graph.ndata['label']
train_mask = graph.ndata['train_mask']
valid_mask = graph.ndata['val_mask']
test_mask = graph.ndata['test_mask']
n_features = node_features.shape[1]
n_labels = int(node_labels.max().item() + 1)
def evaluate(model, graph, features, labels, mask):
model.eval()
with torch.no_grad():
logits = model(graph, features)
logits = logits[mask]
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
model = SAGE(in_feats=n_features, hid_feats=100, out_feats=n_labels)
opt = torch.optim.Adam(model.parameters())
for epoch in range(10):
model.train()
# 使用所有节点(全图)进行前向传播计算
logits = model(graph, node_features)
# 计算损失值
loss = F.cross_entropy(logits[train_mask], node_labels[train_mask])
# 计算验证集的准确度
acc = evaluate(model, graph, node_features, node_labels, valid_mask)
# 进行反向传播计算
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())
异构图上节点分类
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
n_users = 1000
n_items = 500
n_follows = 3000
n_clicks = 5000
n_dislikes = 500
n_hetero_features = 10
n_user_classes = 5
n_max_clicks = 10
follow_src = np.random.randint(0, n_users, n_follows)
follow_dst = np.random.randint(0, n_users, n_follows)
click_src = np.random.randint(0, n_users, n_clicks)
click_dst = np.random.randint(0, n_items, n_clicks)
dislike_src = np.random.randint(0, n_users, n_dislikes)
dislike_dst = np.random.randint(0, n_items, n_dislikes)
hetero_graph = dgl.heterograph({
('user', 'follow', 'user'): (follow_src, follow_dst),
('user', 'followed-by', 'user'): (follow_dst, follow_src),
('user', 'click', 'item'): (click_src, click_dst),
('item', 'clicked-by', 'user'): (click_dst, click_src),
('user', 'dislike', 'item'): (dislike_src, dislike_dst),
('item', 'disliked-by', 'user'): (dislike_dst, dislike_src)})
hetero_graph.nodes['user'].data['feature'] = torch.randn(n_users, n_hetero_features)
hetero_graph.nodes['item'].data['feature'] = torch.randn(n_items, n_hetero_features)
hetero_graph.nodes['user'].data['label'] = torch.randint(0, n_user_classes, (n_users,))
hetero_graph.edges['click'].data['label'] = torch.randint(1, n_max_clicks, (n_clicks,)).float()
# randomly generate training masks on user nodes and click edges
hetero_graph.nodes['user'].data['train_mask'] = torch.zeros(n_users, dtype=torch.bool).bernoulli(0.6)
hetero_graph.edges['click'].data['train_mask'] = torch.zeros(n_clicks, dtype=torch.bool).bernoulli(0.6)
# Define a Heterograph Conv model
import dgl.nn as dglnn
class RGCN(nn.Module):
def __init__(self, in_feats, hid_feats, out_feats, rel_names):
super().__init__()
# 实例化HeteroGraphConv,in_feats是输入特征的维度,out_feats是输出特征的维度,aggregate是聚合函数的类型
self.conv1 = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(in_feats, hid_feats)
for rel in rel_names}, aggregate='sum')
self.conv2 = dglnn.HeteroGraphConv({
rel: dglnn.GraphConv(hid_feats, out_feats)
for rel in rel_names}, aggregate='sum')
def forward(self, graph, inputs):
# 输入是节点的特征字典
h = self.conv1(graph, inputs)
h = {k: F.relu(v) for k, v in h.items()}
h = self.conv2(graph, h)
return h
model = RGCN(n_hetero_features, 20, n_user_classes, hetero_graph.etypes)
user_feats = hetero_graph.nodes['user'].data['feature']
item_feats = hetero_graph.nodes['item'].data['feature']
labels = hetero_graph.nodes['user'].data['label']
train_mask = hetero_graph.nodes['user'].data['train_mask']
node_features = {'user': user_feats, 'item': item_feats}
opt = torch.optim.Adam(model.parameters())
for epoch in range(5):
model.train()
# 使用所有节点的特征进行前向传播计算,并提取输出的user节点嵌入
logits = model(hetero_graph, node_features)['user']
# 计算损失值
loss = F.cross_entropy(logits[train_mask], labels[train_mask])
# 计算验证集的准确度。在本例中省略。
# 进行反向传播计算
opt.zero_grad()
loss.backward()
opt.step()
print(loss.item())