统计学习方法——感知机的Python实现

这篇博客详细介绍了如何使用Python实现统计学习方法中的感知机模型,包括模型概念、输入参数、输出结果以及提供了相应的代码示例进行解释。
摘要由CSDN通过智能技术生成

统计学习方法——感知机的Python实现

统计学习方法——感知机的Python实现


模型

是一个二分类的线性分类模型

输入

  • 训练数据集 T T T
  • 标签 Y = ( + 1 , − 1 ) Y=(+1,-1) Y=(+1,1)
  • 学习率

输出

  • w , b w,b w,b
  • 感知机模型 f ( x ) = s i g n ( w ∗ x + b ) f(x)=sign(w*x+b) f(x)=sign(wx+b)

代码

from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd


class Perceptron:
    # 模型初始化
    def __init__(self, features=2, bias=0, l_rate=0.1):
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值