统计学习方法——感知机的Python实现
模型
是一个二分类的线性分类模型
输入
- 训练数据集 T T T
- 标签 Y = ( + 1 , − 1 ) Y=(+1,-1) Y=(+1,−1)
- 学习率
输出
- w , b w,b w,b
- 感知机模型 f ( x ) = s i g n ( w ∗ x + b ) f(x)=sign(w*x+b) f(x)=sign(w∗x+b)
代码
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
class Perceptron:
# 模型初始化
def __init__(self, features=2, bias=0, l_rate=0.1):